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Abstract: Levulinic acid (LA) is one of the top twelve chemicals listed by the US Department of Energy
that can be derived from biomass. It serves as a building block and platform chemical for producing
a variety of chemicals, fuels and materials which are currently produced in fossil based refineries.
LA is a key strategic chemical, as fuel grade chemicals and plastic substitutes can be produced by
its catalytic conversion. LA derivatisation to various product streams, such as alkyl levulinates
via esterification, γ-valerolactone via hydrogenation and N-substituted pyrrolidones via reductive
amination and many other transformations of commercial utility are possible owing to the two oxygen
functionalities, namely, carbonyl and carboxyl groups, present within the same substrate. Various
biomass feedstock, such as agricultural wastes, marine macroalgae, and fresh water microalgae
were successfully converted to LA in high yields. Finding a substitute to mineral acid catalysts for
the conversion of biomass to LA is a challenge. The use of an ultrasound technique facilitated the
production of promising nano-solid acid catalysts including Ga salt of molybophosphoric acid and
Ga deposited mordenite zeolite, with optimum amounts of Lewis and Bronsted acidities needed
for the conversion of glucose to LA in high yields, being 56 and 59.9 wt.% respectively. Microwave
irradiation technology was successfully utilized for the accelerated production of LA (53 wt.%) from
glucose in a short duration of 6 min, making use of the unique synergistic catalytic activity of ZnBr2

and HCl.

Keywords: levulinic acid; biomass; solid acid catalysts; biochemicals; biofuels; biomaterials;
heteropoly acids; zeolites; microwave irradiation; ultrasound

1. Introduction

Biomass is a renewable energy resource which is underutilized. Biofuels such as
biodiesel and bioethanol, biochemicals such as glucose and levulinic acid (LA), and bio-
materials such as biodegradable polymers can be produced from biomass [1]. On average,
32.8 papers/month were published on the subject with keywords, namely, LA and biomass,
from the period 1 January 2022 to 30 June 2022, based on the Web of Science database [2–62].
Indeed, proliferation in this field of research is professed due to the strategic significance
of LA. The unique feature of LA is that the molecule has two oxygen-containing func-
tional groups, namely, carbonyl and carboxyl, which could be converted easily, making the
derivatization of LA prolific. The intention of the authors in compiling this review is not to
summarize the history of LA from biomass. On the contrary, the objective is to provide a
possible solution to the war-torn and resource-depleted world.

The majority of the content of this review is devoted to the results from Professor
Gedenkan’s laboratory [63–71]. In addition, for want of time, only the major developments
during the period from 1 January 2022 to 30 June 2022 are outlined [2–62].
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2. Possible Biomass Feedstock for Levulinic Acid (LA) Production

Literally all lignocellulosic biomass (terrestrial), as well as unconventional glucosic
feedstock such as marine and fresh water algae, and bacterial sources like cyanobacteria
can be used for LA production. The diverse agricultural wastes (lignocellulosic biomass),
namely, cotton, sugar cane bagasse, Cicer arietinum, rice straw, corn stover, sweet sorghum
bagasse and miscanthus, that form a potential source of LA are shown in Figure 1.
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Fructose or fructose-containing feedstock, such as sugar cane juice, is an ideal
feedstock [5,11,14,66] for LA production. This is because of the mechanistic steps involved
in the direct conversion of cellulosic biomass to LA. The mechanistic steps involved in the
conversion of cellulose to LA comprise the initial step of hydrolysis of cellulose to glucose
catalysed by an acid; the glucose then isomerizes to fructose. By consecutive dehydration
and rehydration steps, fructose is converted to hydroxy methyl furfural and LA, respec-
tively. Each mole of fructose yields a mole of LA and formic acid, as shown in Figure 2. The
difficult stages in the direct conversion of biomass to LA, namely hydrolysis of cellulose and
isomerization of glucose, could be avoided if fructose/fructose-containing carbohydrates
were used by industry as feedstock instead of cellulosic biomass, until the technology for
the direct conversion of lignocellulosic biomass to LA is mature. This would hasten the
appearance of LA based products in the market at the service of mankind, alleviating the
problems of energy and environmental crises.
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Figure 2. Consecutive reactions in the conversion of lignocellulosic biomass to levulinic acid. Adapted
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This is analogous to the use of sugar cane as a feedstock for the production of
bioethanol in Brazil and the US, that has seen the light of the market as a gasoline substi-
tute/additive. Until the technology for the direct conversion of cellulosic feedstock to fuels
(bioethanol) and chemicals (LA) is ripe, facile carbohydrates (monomeric/dimeric) should
be used as feedstock to meet the growing demand for fuel, as can be seen from the fuel
and economic crises in Sri Lanka. A LA yield of 100 mol% and a conversion of 100% of
fructose is achieved at 120 ◦C in 30 h using a commercial perfluorosulfonic acid resin in a
pellet form as the catalyst (Aquivion®P98 PFSA) [5]. Such catalytic strategies need to be
scaled up for the industrial production of LA. The diversification of LA to fuels, chemicals
and materials requires a huge supply of this strategic chemical. The diversity in biomass
(terrestrial, fresh water and marine) feedstock, and various catalysts innovatively used for
the production of LA are shown in Table 1.

The use of an unconventional reaction medium such as γ-valerolactone (GVL), as
a solvent, reduced the activation energy of the process of conversion of biomass to LA.
The reaction kinetics of glucose conversion to LA was accelerated by the use of GVL as a
solvent instead of water. The adsorption of glucose on the surface of the solid acid catalyst
(CH3-SBA-15-SO3H) was enhanced. Moreover, the rate determining step, namely, direct
dehydration of glucose to 5-HMF was accelerated in the GVL medium as the intermittent
step of isomerization of glucose to fructose was completely eliminated in this medium. The
activation energy for the conversion of glucose to LA was reported to be 62.66 kJ/mol. The
yield of LA was enhanced by five times when the reaction was carried out in GVL medium
instead of water, with the reaction conditions being a temperature of 160 ◦C for 120 min [10].
Another new avenue in this field of research is the use of environmentally friendly organic
solvents, namely, deep eutectic solvents (DESs), for the pretreatment of lignocellulosic
biomass to reduce the recalcitrance of the biomass and to improve the accessibility of the
reaction site by the acidic catalyst. The reaction site in question is the β-1,4 glycosidic bond,
as shown in Figure 3.
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Table 1. Diverse biomass feedstock and catalysts used for levulinic acid (LA) production.

Feedstock for LA Production Catalyst Yield of LA Reference

Fructose
Aquivion®P98 PFSA, a

commercial perfluorosulfonic
acid resin in a pellet form

100 mol% at 120 ◦C for 30 h; [5]

Glucose LaMnO3 69.5 mol%; [6]

Glucose MOF (UIO-66-NH-R-SO3H) 71.6 mol% at 170 ◦C; [7]

Corn cob

Mo doped carbon
microspheres; presence of
Lewis acid sites, namely,

Mo2C and Mo6+ promoted the
isomerization of glucose

to fructose

33.02 (% of theoretical
maximum) yield of LA at

195 ◦C in 90 min;
[8]

Glucose
Para-toluene sulfonic acid

(PTSA) functionalized
activated carbon with CaCl2

61 mol% at 175 ◦C in 120 min
with MIBK-H2O solvent system; [9]

Fructose
ZrO2-SiO2-SnO2

Solid super acid catalyst
with H0 = −14.52

80 mol% at 180 ◦C in 3.5 h; [14]

Laminaria digitata (wild
brown seaweed) 4 wt.% H2SO4

12.5 wt.% at 200 ◦C in
30 min; [15]

Spirulina platensis residue 1 M H2SO4
16.36 wt.% at 180 ◦C for

30 min; [16]

Glucose Cr-MCM-22 60 wt.% at 200 ◦C in 1 h; [17]

Glucose and cellulose
Cu HZSM-5-HMS (hexagonal

mesoporous silica)
hybrid catalyst

45 and 30 mol% from glucose
and cellulose, respectively.

Ideal conditions for glucose
conversion are: 200 ◦C;

10 bar N2; 5 h;
Ideal conditions for cellulose

conversion are:
230 ◦C; 5 h;

[18]

Newspaper wastes with
crystalline cellulose 0.5 M H2SO4

23–27 wt.% obtained from
sanitary papers,

tracing/parchment papers and
paper food box; 180 ◦C; 5 min,

1:1 GVL/H2O solvent;

[19]

Rice straw 1.5 wt.% HCl

52 mol% obtained from rice
straw pretreated with choline

chloride—oxalic acid deep
eutectic solvent;

Pretreatment: 100 ◦C for 2 h;
Acid hydrolysis: 120 ◦C for 2 h;

[20]

Rice straw

Polyehtyleneimine
functionalized acidic ionic

liquid (PolyE-IL) with HSO4
−

counter cation

65.5 (% of theoretical maximum)
from pretreated rice straw;

Hydrolysis conditions: 210 ◦C
for 120 min;

[21]

Safflower stalk with 45.2 wt.%
cellulose content 0.3 M PTSA 30 (% of theoretical maximum)

at 200 ◦C for 120 min; [22]

Cellulosic residue from
corn stover

Phosphoric acid activated
lignin based activated carbon

67.9 mol% at 190 ◦C in 150 min
in MIBK/H2O-NaCl medium; [23]
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The use of DESs for pretreating the biomass improves the accessibility of the catalytic
acid site (H+) to the reaction site in the substrate by a two-fold action, namely, by dissolv-
ing the hemicellulose component as well as by weakening the inter and intramolecular
hydrogen bonding that hinders the accessibility to the reaction site. Typical examples
of such DESs include choline chloride-acetic acid, choline chloride-succinic acid, choline
chloride-oxalic acid, choline chloride-malonic acid, and choline chloride-lactic acid [20,23].
Innovation in catalyst design includes heteroatom doping or heteroatom functionaliza-
tion in activated carbon materials, making them environmentally benign catalysts for
biomass conversion. Strategies for sulphur functionalization of biomass (Ipomoea carnea)
derived activated carbon material using elemental sulphur/hydrazine solution under
modest reaction conditions (400 ◦C) resulted in the sulphur loading of 0.34 wt.%, and the
resulting material was used as an adsorbent for Hg for environmental applications [72].
Sulfonate/sulphate functionalized carbon nitride (g-C3N4) with a sulphur content of 9.2%
catalysed the conversion of glucose to LA with a yield of 48 mol% and a selectivity of
57 mol% [12].

3. Possible Catalysts for Accelerated Levulinic Acid (LA) Production from Biomass

In addition to the catalysts summarized in Table 1, innovation is achieved in the design
of heteropoly acid based solid acid catalysts with optimal amounts of Lewis and Bronsted
acidity, a combination that is vital for the conversion of biomass to LA. Gedanken’s group
made a significant contribution to the use of microwave technology and the design of solid
acid catalysts for the accelerated production of LA from biomass [63–71]. A total of 53 wt.%
LA yield was obtained from glucose by the synergistic catalytic activity of HCl and ZnBr2
under microwave irradiation for 6 min. The improved catalytic activity was attributed to
the in situ generation of HBr (Scheme 1).
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Scheme 1. Synergistic catalytic activity of HCl and ZnBr2 under microwave irradiation leading to in
situ generation of HBr for accelerated production of levulinic acid [67].

Pretreatment with a simulated green liquor (Na2CO3-Na2S, 20 wt.% total titratable
alkali, TTA, and 40 wt.% sulfidity) at 200 ◦C for 15 min was an effective strategy to delignify
(64.8–91.2 wt.%) various herbaceous biomasses, namely, rice straw (RS), corn stover (CS),
sweet sorghum bagasse (SSB), and Miscanthus (MS). As a consequence, the cellulose
content of the delignified biomasses increased from 33.0–44.3 to 61.1–68.4 wt.% depending
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on the source of the biomass. However, under similar conditions of biomass conversion to
LA, namely, 1 M HCl, 150 ◦C, 5 h, 20 g/L solid loading, the yield of LA from the original
untreated and delignified biomasses was 60.2–78.5 and 50.4–56.0 wt.% (% of the theoretical
maximum). The variation of the yield of LA as a function of reaction time in the untreated
and pretreated biomass is shown in Figure 4. The concentration of LA in the products from
the pretreated biomass increased by a factor of 1.5.
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Figure 4. Variation of the yield of LA as a function of reaction time from (a) untreated and (b) green
liquor pretreated biomass (rice straw, RS; corn stover (CS); sweet sorghum bagasse (SSB) and
miscanthus (MS) [Reaction conditions: 1 M HCl, 150 ◦C, 50 g/L solid loading; biomass particle
size > 2000 µm]. Adapted with permission from MDPI [63].

The lower yield of LA in RS and MS compared to either CS or SSB could be partially
attributed to the higher lignin contents of 17.1 and 19.6 wt.% respectively. As expected, the
biomass with the lowest lignin content (~13.3%) showed the highest LA yield (78.5 wt.%).
However, the relationship between the lignin content of the biomass and the yield of LA
is unclear and indirect as other factors, such as the relative binding strength of lignin to
cellulose as well as the location of the lignin in the biomass and the ash content of the
biomass also play a role in the conversion of biomass to LA. This is because the yield of LA
from corn stover (75.1 wt.%) is higher than that of RS (60 wt.%), even though the lignin
contents of both are ~17 wt.%. The distinguishing feature between CS and RS is their ash
content, which is 1.5 and 8.2 wt.%, respectively. The higher ash content of the RS could
have retarded the activity of the catalyst (HCl) leading to a lower yield of LA [63].
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Among the various agricultural wastes, namely, Cicer arietinum (CA), cotton, Pinus radiata
(PR) and sugar cane bagasse (SCB), cotton showed the best performance with the highest
yield of LA (44.0 wt.%) under modest hydrothermal reaction conditions (423 K, 1 M HCl,
2 h) (Figure 5). This could be attributed to cotton containing the highest cellulose content
(>99 wt.% from Milouban cotton linters pulp, MCP Ltd., Israel). Biomass with a high
cellulose content is an ideal feedstock for obtaining high yields of LA [70].
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Heteropoly acids are ideal solid Bronsted super acids with a potential to catalyse
vital reactions, such as alkylation, esterification, hydration, dehydration, polymerization
and many others that are involved in the conversion of biomass to biochemicals and
biofuels [64,65,68,69,73–77]. Supporting heteropoly acids on activated carbon materials is
an innovative strategy to exploit their unique selectivity for catalytic reactions involved in
biomass conversion [68,69]. Silicotungstic acid supported on activated carbon showed high
activity and selectivity (94 wt.% glucose) for the conversion of starch to glucose, a precursor
to LA. The catalyst, prepared by wet impregnation, could be used for five reaction runs
without appreciable loss of activity (Figure 6). By suitably tuning the reaction conditions,
the catalyst, 20 wt.% H4SiW12O40/activated carbon, could be exploited for high yield and
selective production of LA from biomass, and efforts in this direction are awaited [68].
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To obtain optimal amounts of Lewis and Bronsted acid sites, efforts were devoted
for preparing Ga salt of molybodphosphoric acid (GaHPMo) [64] and Ga deposited on
mordenite zeolite (Ga@mordenite) [65] using an ultrasound irradiation technique. SEM
images of GaHPMo with elemental mapping and the EDS plot are shown in Figure 7.
Likewise, the TEM images of Ga@mordenite with elemental mapping and the EDS plot are
shown in Figure 8. Uniform distribution of the constituent elements throughout the surface
of the catalyst are shown in the images showing elemental mapping (Figures 7 and 8). High
yields of LA, 56 and 59.9 wt.% respectively, were obtained from glucose using GaHPMo
and Ga@mordenite catalysts [64,65].
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Figure 8. TEM image of Ga deposited on mordenite zeolite (Ga@mordenite) with elemental mapping
(O, Al, Si, Ga) and EDS plot. Adapted with permission from Wiley-VCH [65].

Thus, heteropoly acids supported on activated carbon as well as Ga modified het-
eropoly acids and Ga modified zeolites are promising solid acid catalysts for LA production
from glucose.

4. Possible Biochemicals from Levulinic Acid
4.1. Alkyl Levulinates from Levulinic Acid

Alkyl levulinates are potential fuel blends and additives [25,26,28,32,33,35,36,45,49].
Upgrading LA to levulinates via esterification using a variety of catalysts, namely, zeolites,
mesoporous silica, carbon materials, metal organic frame works (MOFs), ion exchange
resins and enzymes has received considerable attention globally, owing to their potential as
fuel-blending chemicals used in biofuel production. Use of such blending agents reduce
the emission of polluting gases and thereby global warming. Use of alkyl levulinates as
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additives improve the physical, chemical and combustion properties of fuels. Moreover, the
performance of the engine is also enhanced. Catalytic strategies for the production of alkyl
levulinates, either linear (with varying chain length) or branched, are being developed.
Alkyl levulinates are excellent additives to gasoline and diesel, resulting in an improvement
in engine performance and a reduction in the emission of polluting gases. In addition to
being used as fuel additives, alkyl levulinates find application in pharmaceutical, polymer,
agriculture, cosmetic, resin and coating and solvent industries [2]. Currently, ~90% of
industrial research and development is devoted to heterogeneous catalysis owing to the
advantages of solid acid catalysts, such as zeolites, mesoporous silica, carbon materials,
polyoxometalates, metal organic frame works, ion-exchange resins and biocatalysts. Tuning
the porosity and acidity of zeolites has been an active area of research. Constraints with
conventional mesoporous silica, namely, high reaction temperatures, reaction times and
consumption of alcohol are being solved using hybrid mesoporous inorganic-organic silica
as catalysts. As a result, improvements in green chemistry metrics, namely, E-factor, atom
economy, recyclability and product yield were achieved. Though carbon materials are
active and promising catalysts for the esterification of LA, the high cost of production and
harsh production conditions (high temperature and the use of corrosive acids and alkalies)
impose restrictions on large scale production. Moreover, strong affinity between the sulfonic
acid functional groups on the carbon surface and the substrate, namely LA, causes problems
of reduced activity and recyclability. Efforts in the direction of functionalization of carbon
materials with solid acids, namely, zeolites or hetropoly acids, are being made to surmount
these problems [64,65,68,69,71]. Moreover, efforts are dedicated to produce carbon materials
from wasteland weeds (such as Calotropis gigantea and Ipomoea carnea) and agricultural
wastes (such as Borassus flabellifera and Limonia acidesima) using environmentally friendly
activating agents, such as alkali salts of organic acids (for example, sodium oxalate) under
mild production conditions so as to reduce the cost of production and make the process
more environmentally friendly [72]. Typical wasteland weeds and agricultural wastes
exploited for the production of high surface area microporous activated carbon materials
are shown in Figure 9 [72,78,79].
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Figure 9. Wasteland weeds, (a) Calotropis gigantea, (b) Ipomoea carnea; and agricultural wastes,
(c) spikes of Borassus flabellifera and (d) shells from Limonea acidissima used for the production of
microporous high surface area activated carbon materials [72].

Recent developments in the esterification reaction of LA to alkyl levulinates are
highlighted in Table 2.
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Table 2. Biochemicals from levulinic acid (LA).

Biochemical from LA Catalyst Product Yield Reference

GVL
Hf-FDCA (catalyst prepared from the

hybrid of a metal precursor and
2,5 furan dicarboxylic acid

88% yield of GVL at 180 ◦C in 24 h; [24]

Hexyl levulinate
Sulfated silica prepared by the

sulfonation of amorphous bamboo
leaf ash

95.2% conversion of LA at 90 ◦C in 7 min
with 98.0% selectivity to hexyl levulinate;

catalyst reused six times;
[25]

GVL 2 wt.% Pt on ZrO2

97% GVL yield; formic acid used as
hydrogen source;

T = 140 ◦C; t = 180 min; triethyl amine
used to facilitate formic acid

decomposition; catalyst reused for
four consecutive cycles;

[27]

Methyl levulinate
MOF containing Zr metal cluster with

amino terephthalic acid
(UiO-66-NH2) ligand

85.89% yield of methyl levulinate in an
autoclave in 1 h;

T = 130 ◦C; P = 30 bar N2 pressure;
k = 3.57 × 10−3 min−1;

activation energy = 48.99 kJ/mol;

[28]

Chiral GVL
Nickel phosphine complex; Ni(OTf)2; (S,

S) Ph-BPE/(R, R) Ph-BPE; TFE; 50 ◦C;
12 h; in a gram scale preparation

78.6% yield of (R)-GVL with 96% ee;
79.05% yield of (S)-GVL with 96% ee; [29]

GVL
Ru nanoparticles anchored on

hierarchical porous N-doped carbon
nanospheres (3 wt.% Ru/HPNC)

GVL yield > 99% at 100 ◦C in 2 h under
solvent-free conditions; 2.5 MPa H2;

catalyst reused for six reaction cycles;
[30]

n-butyl levulinate (BL) LiCl·3H2O + AlCl3 (molten salt
hydrates) with microwave irradiation

95.5% yield of n-butyl levulinate;
T = 100 ◦C; t = 2.5 h; activation energy of
n-butyl levulinate formation with LiCl

3H2O and LiCl. 3H2O + AlCl3 were
70.9 kJ/mol and 31.8 kJ/mol respectively;

[35]

GVL Zr-Al beta 85.5% yield of GVL; isopropyl alcohol
used as hydrogen donor; [36]

(R)-4-amino pentanoic acid Glutamate dehydrogenase coupled
with formate dehydrogenase

97% conversion of LA with a (R)-4-amino
pentanoic acid stereoselectivity of >99%

in 11 h;
[37]

GVL
Ru/PEG (ruthenium nanoparticles

stabilized by water soluble
polymer PED)

82 mol% conversion of LA with
99.2 mol% selectivity for GVL;

T = 140 ◦C; t = 15 min;
[38]

GVL

Zr@PS-FA (successful coordination
observed in the catalyst between Zr4+

and OH and COOH groups of the
partially hydrolysed Pinnistum sinese

in formic acid)

95.6 mol% yield of GVL;
T = 180 ◦C; t = 1.5 h;

TOF = 9.76 h−1
[39]

2-methyl tetrahydrofuran Ni-Cu-OMA (ordered
mesoporous alumina)

73.0% selectivity towards 2-MTHF;
two steps are involved in the production

of 2-MTHF;
Step 1: 190 ◦C; 30 bar H2; 4 h
Step 2: 230 ◦C; 50 bar H2; 12 h

[41]

GVL

Ru@GOF (Ru nanoparticles confined
in the gallery space of graphene oxide

frameworks pillared with
organic linkers)

93 mol% yield of GVL; T = 90 ◦C; t = 8 h;
TOF = 7240 h−1;

catalyst reusable for at least
five reaction runs

[42]
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Table 2. Cont.

Biochemical from LA Catalyst Product Yield Reference

GVL 5% Ru/Sn-SBA-15
LV conversion—99%;
GVL selectivity—98%;

T = 250 ◦C; t = 3 h; H2 flow = 25 mL/min;
[43]

GVL 10 wt.% Re supported on activated
carbon

LA conversion—100%
GVL selectivity—99%

T = 120 ◦C; t = 4 h;
[44]

Ethyl levulinate H3PMo12O40/Activated carbon Ethyl levulinate yield = 80%; T = 80 ◦C;
t = 15 h; [45]

4.2. Hydrogenation of LA to γ-Valerolactone

Apart from the esterification of LA to levulinates, hydrogenation of LA is a promising
route for the production of the biochemical and biofuel precursor γ-valerolactone, using
either H2 or formic acid or alcohols as the hydrogen source, and this has been extensively
studied [27,29,30,36–44,46,50]. Promising catalysts developed for the conversion of LA to
γ-valerolactone are summarized in Table 2.

4.3. Reductive Amination of LA to N-Substituted Pyrrolidones and N-Substituted Pyrrolidinones

Production of biobased nitrogenous chemicals is of vital significance to food security
and for the pharmaceutical industry. Studies on the conversion of LA to N-containing
organic compounds, especially N-substituted pyrrolidones [31,34] and N-substituted
pyrrolidinones [47] are highlighted in Table 3.

Table 3. Production of biobased nitrogenous chemicals.

Nitrogenous Chemical Catalyst Product Yield Reference

N-substituted pyrrolidones No catalyst;
HBpin used as reducing agent

28–94% yield of
N-substituted pyrrolidones; [31]

5-methyl-2-pyrrolidone

20 molar percent of Zr in the Co,
Zr bimetallic carbon-nitrogen

doped catalyst
(Co-Zr@chitosan-20)

92.5% yield of 5-methyl-2-pyrrolidone;
ammonia as N source; T = 130 ◦C;

P = 30 bar H2; 24 h;
[34]

N-butyl-5-methyl-2-
pyrrolidinone Cu10/AlB3O

N-butyl-5-methyl-2-pyrrolidinone
yield = 94%;

LA conversion = 99%;
stable catalytic performance for 200 h;

T = 200 ◦C; LHSV = 0.3 h−1;
1,4-dioxane solvent; LA:n-butyl amine
mole ratio = 1:1; H2 pressure, 3 MPa;

[47]

5. Possible Biofuels from Levulinic Acid (LA)

Hydrocarbons such as ethylene and propylene can be produced from LA via bio
1-butene through a series of reactions, namely, hydrolysis, hydrogenation, decarboxyla-
tion, metathesis and cracking [51]. Ethylene and propylene are produced from sugar cane
bagasse by the hydrolysis of the cellulose component to glucose, followed by the isomeriza-
tion of glucose to fructose and subsequent dehydration of the fructose to 5-HMF, followed
by the dehydration of 5-HMF to LA. The LA thus generated is hydrogenated to GVL.
GVL is decarboxylated to 1-butene using an SiO2/Al2O3 catalyst at a WHSV of 0.18 h−1

at 375 ◦C and 36 bar N2. Bio 1-butene thus obtained is converted (81.5%) to propylene
(selectivity: 42.02 wt.%) and ethylene (selectivity: 19.36 wt.%) at 500 ◦C and 1 bar and at a
WHSV of 6 h−1. 2-MTHF is another promising biofuel derived from LA. MTHF is a more
promising biofuel and gasoline additive than bioethanol owing to its lower miscibility with
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water, high heating value, energy density, and higher stability, despite its lower octane
number (87 vs. 108.6) [53]. Hydrodeoxygenation of LA over a bimetallic Ni5Co25/γ-Al2O3
catalyst gave high activity with 73.4% yield of 2-MTHF at 240 ◦C. Commercial production
of 2-MTHF is based on corn cob derived furfural. Recently, advances have been made for
the production of 2-MTHF from a cellulose base biochemical such as LA. The existence of
metal as well as metal oxide species in the NiCo/γ-Al2O3 bimetallic system is necessary
for the conversion of LA to 2-MTHF as the metal sites activate the H2, promoting the
hydrogenation, while the metal oxides provide the necessary acid sites for the dehydration
reaction. 2-proponal was found to be a promising reaction medium for the dehydration of
1,4-pentandiol to 2-MTHF [53]. Dimers (C10) of LA, namely, tetrahydro-2-methyl-5, γ-dioxo-
2-furanpentanoic acid (TMDFA), 3-(2-methyl-5-oxotetrahydrofuran-2-yl)-4-oxopentanoic
acid (MOTOA) and 3-acetyl-2-methyl tetra hydro-5-oxo-2-furan propanoic acid (AMTOFA)
are potential biojet fuel (C8-C16) precursors from the dimerization of LA using an H-Beta
19 catalyst at 148 ◦C for 24 h with a LA conversion of 79 mol% and a selectivity towards
LA dimers of >98 mol% [53]. Valeric acid is a strategic platform chemical derived from the
hydrogenation of LA that yields a new class of biofuels called valeric biofuels [61].

6. Possible Biomaterials from Levulinic Acid (LA)

Polyhydroxy-alkanoates (HPAs) are a viable alternative to non-biodegradable plastics
derived from fossil resources [62]. Chiral GVL derived from the asymmetric hydrogenation
of LA leads to the production of diverse natural products [29].

7. Conclusions

The use of microwave technology for the conversion of biomass to biochemicals,
biofuels and biomaterials offers a solution to the resource depleted world. The use of
concentrated solar energy combined with activated carbon supported heteropoly acids
hold a promise for the energy efficient and selective conversion of biomass to levulinic acid
(LA). The use of simulated green liquor pretreatment effectively delignified the herbaceous
biomasses used in this study. However, it is not only the amount of lignin but also the
relative location of the lignin and the strength of the bonding between the lignin, cellulose
and ash content in the biomass that are crucial for obtaining high yields of LA from biomass.
Biomass with a high cellulose content (>99%), such as cotton, is an ideal feedstock for LA
production. Until the technology for the direct conversion of lignocellulosic biomass to
LA using solid acid catalysts is mature, fructose could be used as the starting material and
Ga@mordenite could be used as the solid acid catalyst for the large-scale production of
LA. Though significant progress has been made in the diversification of LA to biofuels and
biochemicals, progress is awaited in the production of plastic substitutes, natural products
and chiral nitrogenous biomaterials from LA.
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