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PREFACE 
 
 
Indiscriminate extraction and increasing consumption of fossil fuel 

resources (crude oil, natural gas, and coal) are adversely affecting the major 
spheres of human activity. With the depletion of these fuels, efforts are being 
directed to the use of renewable sources such as solar, wind, and biomass. This 
book provides new research on the systems, performance and recent 
developments in solar energy. 

As explained in Chapter 1, one of the best alternatives to petroleum, the 
production of bioethanol has increased since 1990, with a sharp increase from 
the year 2000 onwards. Bioethanol also offers an attractive alternative as a fuel 
in low-temperature fuel cells, as it can be produced in large quantities from 
agricultural waste and biomass. Currently, global ethanol is produced mainly 
from sugar and starch feedstock. Successful utilization of solar energy which is 
renewable, abundant, and inexpensive, for bioethanol production from biomass, 
has the potential to solve the fuel shortage problem. Solar energy provides an 
important alternative energy source, even if only a portion of this energy is 
harnessed for heating applications. The authors work focuses on using solar 
thermal energy for bioreaction leading to ethanol production. A solar reactor was 
developed to perform the conversion of starch (in a batch process) and glucose 
(in a continuous flow system) to bioethanol by heating the reactor using solar 
irradiation. Aqueous starch solution (5 wt%) was charged into the reactor bed 
loaded with baker’s yeast (Saccharomyces cerevisiae) and enzymes, resulting in 
the conversion of starch into ethanol in a single-step process, yielding 0.5 M, 25 
mL ethanol/day. A significant amount of ethanol corresponding to 84% of the 
theoretical yield was obtained after two months. The process was scaled up to 15 
wt% starch, producing 1.3 M ethanol, which was demonstrated as a potential 
and sustainable fuel for direct ethanol fuel cells (DEFCs) (310 mAmgPt-1, 0.75 
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V). Additionally, the secondary metabolite glycerol was fully reduced to 1,3-
propanediol, which is the first example of a fungal strain that converts glycerol 
in situ to a value-added product. The batch process of bioethanol production was 
further developed to a continuous-flow process. When aqueous glucose 
solutions of 10, 20, 30, and 40 wt% were fed into the reactor, high ethanol yields 
(91, 86, 89, and 88% of the theoretical yield, respectively) were obtained, 
indicating the atom efficiency of the process. No loss was observed in the 
activity of the yeast even after two months of continuous operation of the 
process. The ethanol produced from 20 wt% glucose feed (2 M) was 
demonstrated as a potential fuel for DEFCs with current and power density 
values as high as 700 mA/cm2 and 330 mW/cm2 at a modest open circuit voltage 
of 1.65 V. Productive utilization of solar energy for driving the fermentation 
reaction as well as the special design of the reactor that facilitates in situ 
separation of ethanol from the fermentation broth, make the current process 
economically feasible and environmentally friendly, and therefore industrially 
appealing and adoptable. 

In Chapter 2, the modelling techniques of PV panels from I-V 
characteristics are discussed. At the beginning, a necessary review on the 
various methods are presented, where difficulties in mathematics, drawbacks 
in accuracy, and challenges in implementation are highlighted. Next, a novel 
approach based on linear system identification is demonstrated in detail. Other 
than the prevailing methods of using approximation (analytical methods), 
iterative searching (classical optimization), or soft computing (artificial 
intelligence), the proposed method regards the PV diode model as the 
equivalent output of a dynamic system, so the diode model parameters can be 
linked to the transfer function coefficients of the same dynamic system. In this 
way, the problem of solving PV model parameters is equivalently converted to 
system identification in control theory, which can be perfectly solved by a 
simple integral-based linear least square method. Graphical meanings of the 
proposed method are illustrated to help readers understand the underlying 
principles. As compared to other methods, the proposed one has the following 
benefits: 1) unique solution; 2) no iterative or global searching; 3) easy to 
implement (linear least square); 4) accuracy; 5) extendable to multi-diode 
models. The effectiveness of the proposed method has been verified by indoor 
and outdoor PV module testing results. In addition, possible applications of the 
proposed method are discussed like online PV monitoring and diagnostics, 
non-contact measurement of POA irradiance and cell temperature, fast model 
identification for satellite PV panels, and etc. 
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As shown in Chapter 3, photovoltaics (PV) degradation is a key 
consideration during PV performance evaluation. Accurately predicting power 
delivery over the course of lifetime of PV is vital to manufacturers and system 
owners. With many systems exceeding 20 years of operation worldwide, 
degradation rates have been reported abundantly in the recent years. PV 
degradation is a complex function of a variety of factors, including but not 
limited to climate, manufacturer, technology and installation skill. As a result, 
it is difficult to determine degradation rate by analytical modeling; it has to be 
measured. As one set of degradation measurements based on a single sample 
cannot represent the population nor be used to estimate the true degradation of 
a particular PV technology, repeated measures through multiple samples are 
essential.  

In Chapter 3, linear mixed effects model (LMM) is introduced to analyze 
longitudinal degradation data. The framework herein introduced aims to 
address three issues: 1) how to model the difference in degradation observed in 
PV modules/systems of a same technology that are installed at a shared 
location; 2) how to estimate the degradation rate and quantiles based on the 
data; and 3) how to effectively and efficiently plan degradation measurements. 
Solar power is always the ultimate energy source on earth.  Solar energy does 
not drive the hydrologic cycle and wind, but also produces biomass including 
ancient fossil fuels and present foods. Solar energy is one of the potential 
renewable energy and has been actively promoted by many countries.  

In Chapter 4, the policy and promotion strategy of solar energy 
developments between Taiwan and Japan were surveyed and compared. The 
results showed that the solar power increased significantly in the past ten 
years. The cumulative capacity of solar energy (CCSE), solar power 
generation (SPG), and the ratio of SPG to total power generation for Taiwan in 
2014 gave on 615.2, 533.1, and 466.2 times than those in 2005. The CCSE, 
SPG, and the ratio of SPG to TPG for Japan in 2014 gave on 16.5, 16.4, and 
17.6 times than those in 2005. Besides, an analytic hierarchy process (AHP) 
structure was proposed for decision makers to make decisions to prioritize and 
select policy and promotion strategy of solar energy developments. Taiwan 
and Japan have launched solar PV R&D in the 1980s and 1970s, respectively. 
In the early 2000s, Taiwan enacted the RED Act and rewarded the solar power 
generation system invested by folk investment to increase the use of renewable 
energy. Japan enacted the RPS Law and Feed-in Tariffs policy towards the 
aim of promoting the new energy electricity. Recent advances in solar 
harvesting technology are transforming the renewable energy landscape. 
Despite the plunging cost of silicon and the ground-breaking efficiencies of 
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new perovskite materials, research into “traditional” biomimetic, organic solar 
energy harvesting complexes remains important for the future success of solar 
energy.  

In Chapter 5 the authors discuss recent findings from studies of molecular 
donor-acceptor complexes that show promise as the active light harvesting 
components in organic solar energy systems. In particular, they focus upon 
self-assembled and covalent complexes of porphyrins (and related molecules) 
and fullerenes as facile electron transfer partners, and highlight several new 
results. Finally, the authors discuss the role these types of “soft” organic-based 
materials play in the solar energy marketplace, and explore how that role is 
likely to change in the future. 
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Chapter 1 

 
 
 

SOLAR-ENERGY-DRIVEN  

BIOETHANOL PRODUCTION  

FROM CARBOHYDRATES FOR 

TRANSPORTATION APPLICATIONS 
 
 

Betina Tabah1, Indra Neel Pulidindi1,  

Venkateswara Rao Chitturi2,  

Leela Mohana Reddy Arava2 

and Aharon Gedanken1,* 
1Department of Chemistry and Institute for Nanotechnology and Advanced 

Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel 
2Department of Mechanical Engineering,  
Wayne State University, Detroit, MI, US 

ABSTRACT 

As one of the best alternatives to petroleum, the production of bioethanol 
has increased since 1990, with a sharp increase from the year 2000 onwards. 
Bioethanol also offers an attractive alternative as a fuel in low-temperature 
fuel cells, as it can be produced in large quantities from agricultural waste 
and biomass. Currently, global ethanol is produced mainly from sugar and 
starch feedstock. Successful utilization of solar energy which is renewable, 

                                                        
* Corresponding author: E-mail address: gedanken@mail.biu.ac.il. 
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abundant, and inexpensive, for bioethanol production from biomass, has the 
potential to solve the fuel shortage problem. Solar energy provides an 
important alternative energy source, even if only a portion of this energy is 
harnessed for heating applications. Our work focuses on using solar thermal 
energy for bioreaction leading to ethanol production. A solar reactor was 
developed to perform the conversion of starch (in a batch process) and 
glucose (in a continuous flow system) to bioethanol by heating the reactor 
using solar irradiation. Aqueous starch solution (5 wt%) was charged into the 
reactor bed loaded with baker’s yeast (Saccharomyces cerevisiae) and 
enzymes, resulting in the conversion of starch into ethanol in a single-step 
process, yielding 0.5 M, 25 mL ethanol/day. A significant amount of ethanol 
corresponding to 84% of the theoretical yield was obtained after two months. 
The process was scaled up to 15 wt% starch, producing 1.3 M ethanol, which 
was demonstrated as a potential and sustainable fuel for direct ethanol fuel 
cells (DEFCs) (310 mAmgPt

-1, 0.75 V). Additionally, the secondary 
metabolite glycerol was fully reduced to 1,3-propanediol, which is the first 
example of a fungal strain that converts glycerol in situ to a value-added 
product. The batch process of bioethanol production was further developed to 
a continuous-flow process. When aqueous glucose solutions of 10, 20, 30, 
and 40 wt% were fed into the reactor, high ethanol yields (91, 86, 89, and 
88% of the theoretical yield, respectively) were obtained, indicating the atom 
efficiency of the process. No loss was observed in the activity of the yeast 
even after two months of continuous operation of the process. The ethanol 
produced from 20 wt% glucose feed (2 M) was demonstrated as a potential 
fuel for DEFCs with current and power density values as high as 700 mA/cm2 

and 330 mW/cm2 at a modest open circuit voltage of 1.65 V. Productive 
utilization of solar energy for driving the fermentation reaction as well as the 
special design of the reactor that facilitates in situ separation of ethanol from 
the fermentation broth, make the current process economically feasible and 
environmentally friendly, and therefore industrially appealing and adoptable. 
 

Keywords: Biofuels, alternate energy, bioethanol, biomass, solar energy, solar 
reactor, glucose, starch, Saccharomyces cerevisiae, fermentation, fuel cells 

1. INTRODUCTION 

1.1. Bioethanol – Relevance to Energy and Environment 

Indiscriminate extraction and increasing consumption of fossil fuel resources 
(crude oil, natural gas, and coal) are adversely affecting the major spheres of 
human activity. With the depletion of these fuels, efforts are being directed to 
the use of renewable sources such as solar, wind, and biomass [1]. Problems 
related to environmental degradation and energy demand can be alleviated 
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with the use of biofuels. Bioethanol is regarded as a potential biofuel from 
renewable sources and widely recognized as one of the most promising 
transportation fuels with economic, environmental, and energy (energy density 
value of bioethanol: 23 MJ/L; gasoline: 35 MJ/L) benefits [2-3]. Bioethanol 
production is important not only for transportation applications, but also for its 
use as feedstock for the production of C2 hydrocarbons. In the near future, 
biofuels – especially bioethanol and biobutanol – may be the vital feedstock 
for long chain hydrocarbons and biochemicals that are currently being 
produced from petroleum [4-5]. 

Ethanol also offers an attractive alternative as a fuel in low-temperature 
fuel cells because it can be produced in large quantities from agricultural 
wastes and biomass [6]. Therefore, current interest centers around the 
production of bioethanol by the fermentation of organic matter, a well-known 
process throughout history [7]. Brazil and the US produce first-generation 
bioethanol from either sugar or starch-based crops (sugarcane ethanol in Brazil 
and corn ethanol in the US), which is currently available at petrol stations. 
Second-generation bioethanol from lignocellulosic materials is still being 
researched [8]. Although cellulose can be effectively utilized for bioethanol 
production, hemicellulose conversion to bioethanol still remains a challenge. 
In addition, the lignin component of the biomass slows down the hydrolysis of 
cellulose, necessitating a pretreatment step. Extensive studies are being carried 
out on the pretreatment of lignocellulosic biomass for the removal of lignin 
and selective isolation of cellulose in a cost-effective and environmentally-
friendly production system [9]. The potential global production of bioethanol 
from crop wastes and crop residues is estimated at 491GL a year, which can 
replace 32% of the total gasoline consumption [10].  

Bioethanol, with advantageous gravimetric energy density (30 MJ/kg), 
high octane value, and combustion efficiency (the anti-knock index for 
gasoline: 87, for ethanol: 99), is one of the most promising alternatives to 
conventional transportation fuels [11-12]. In addition, the use of ethanol 
produced from biomass as a transport fuel can reduce CO2 buildup [13]. 
Bioethanol can be blended with petrol or used as neat alcohol in dedicated 
engines, making it an excellent fuel for advanced future flexible-fuel hybrid 
vehicles [14]. In comparison to gasoline, ethanol contains only a trace of sulfur 
and no nitrogen; therefore, ethanol blended with gasoline helps to decrease the 
overall emission of sulfur oxides (SOx) and nitrogen oxides (NOx) [15]. In 
fact, NOx are more hazardous (>200 times) than COx in terms of global 
warming potential and, together with SOx, they are known to cause acid rain 
which is harmful to crops and historical monuments [16-17]. 
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Global annual bioethanol production reached nearly 115 billion liters in 
2015 [18]. Thus, breakthroughs in bioethanol production technologies are 
crucial for the socio-economic well-being of humankind. However, the use of 
bioethanol as an alternative fuel is not yet economically competitive with the 
petroleum-based fuel. The main strategies to increase the competitiveness of 
bioethanol as an alternative fuel include finding a cheap and abundant 
substrate as well as developing a method or technology that is more atom-
efficient and productive for the production of bioethanol [19]. 

1.2. The Role of Fermentation in Bioethanol Production  

The conversion of biomass into ethanol includes two processes: the degradation 
of starting plant material into fermentable sugars (hydrolysis) and the conversion 
of sugars into alcohol (fermentation) [20]. Fermentation is the vital stage in 
bioethanol production, where the selection of suitable feedstock is a challenge. 
Homogeneous crop materials are easily metabolized to sugars (e.g., molasses 
from sugar cane and starch from corn kernels), whereas bioethanol production 
from lignocellulosic materials is complicated due to the recalcitrant nature of the 
molecules (lignin) present in these materials. Therefore, pretreatment is required 
to render cellulose and hemicellulose more accessible to the catalytic sites [14, 
20, 21]. The fermentation reaction also produces secondary metabolites, such as 
glycerol and acetic acid, which reduce the efficiency of alcohol production; 
however, anaerobic conditions can suppress the formation of these metabolites 
[22-23]. 

A common problem in bioethanol production through fermentation is the 
separation of microorganisms from the broth. Solid-state fermentation 
involves solids in the absence (or near absence) of free water. However, 
substrates need sufficient moisture to support growth and the metabolism of 
microorganisms. Solid-state fermentation, with its low energy requirements, 
produces less wastewater and is environment-friendly. In addition, in solid-
state fermentation, microbial cultures are closer to their natural habitats and it 
is easy to separate them from the fermentation broth [24].Bioethanol 
production using various free or immobilized cells of bacteria (Clostridium 

sp.) or yeasts (Saccharomyces sp., Zymomonas sp.) has been intensively 
studied [25-29]. Fermentation using immobilized cells prevents substrate 
inhibition. In immobilized systems, the use of higher concentrations of 
carbohydrates is feasible and the recovery of the biocatalysts is simple; 
therefore, the biocatalysts can be reused for many fermentation cycles [25]. 
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Immobilization of yeasts on an appropriate support is a promising strategy for 
the continuous flow bioethanol production [29]. 

Saccharomyces cerevisiae is a facultative anaerobe able to live on various 
fermentable and non-fermentable carbon sources. When it is grown on 
fermentable substrates, the metabolic energy originates from glycolysis [30]. 
In addition, S. cerevisiae is the most effective ethanol-producing 
microorganism for hexose sugars including glucose, mannose, and galactose. 
S. cerevisiae is a yeast with high ethanol productivity and high tolerance to the 
inhibitory compounds and ethanol present in the hydrolysate of lignocellulosic 
biomass [31].The inhibitory effect of ethanol on the growth of S. cerevisiae 
together with a kinetic model can be found elsewhere [32-33].Native strains of 
S. cerevisiae are unable to utilize xylose for the fermentation process. Some 
yeast strains have been reported to ferment xylose into ethanol; however, the 
rate and yield of the conversion are considerably lower than glucose 
fermentation [34-35]. 

1.3. Use of Solar Radiation for the Conversion of Biomass into 

Fuels and Chemicals  

The conversion of the sun’s energy into chemical energy, photosynthesis, is 
the basis for life on Earth. Directly or indirectly, photosynthesis fills all of our 
food requirements and many of our needs for fiber and building materials. The 
energy stored within fossil fuels, like most energy sources we use today, is 
also based on chemical energy that came from the sun via photosynthesis. In 
order to provide new and efficient ways to collect and utilize solar energy, the 
energy-harvesting systems of plants can be adapted to man-made systems [7, 
36]. 

In the 21st century, it is crucial to have a successful transition to clean 
well-regulated independent energies (such as solar, wind, and biomass). Solar 
energy may be an important alternative energy source, even if only a portion 
of this energy is harnessed for heating applications. The solar irradiance data 
in Israel is analyzed by Lamedh Energy in order to roughly estimate the 
cumulative output of solar power facilities in Israel, considering the strong link 
between the two variables, as demonstrated in their comprehensive study on 
photovoltaic facilities [37].The solar energy cumulative flux, measured at the 
Israel Meteorological Service station in Bet Dagan (Israel's Central Coastal 
Plane) during 2015, was on average 5,269 Wh/m2 per day, which is about 
2.8% higher than the 1965-2014 multi-year average, well within the standard 
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annual deviation range (±4.0%). 2016 is also expected to show above average 
solar irradiance across Israel, continuing the trend of above-average irradiance 
records [37]. 

Solar energy is an abundant sustainable energy source, and exploiting it for 
biofuel production has economic and environmental advantages. The use of this 
alternate green renewable resource may provide a solution to meet the growing 
energy demands. The utilization of solar thermal energy for biofuel production 
has a significant impact on the overall energetics (energy return on energy 
invested, EROEI) of the process. To our knowledge, the exploitation of solar 
energy for bioethanol production has not been attempted. This study 
demonstrates a solar reactor that converts starch (in a batch process) and glucose 
(in a continuous-flow system) into bioethanol. Bioethanol was produced from 
starch in a single-step process by simultaneous saccharification and fermentation 
and from glucose through solid-state fermentation in the solar-energy-driven 
reactor. The special design of the reactor facilitated in situ separation of ethanol 
from the yeast bed by an evaporation-condensation process. Moreover, the 
bioethanol produced was demonstrated as a potential fuel for operating direct 
ethanol fuel cells [38-39]. 

1.4. Fuel Cells – A Promising Energy Conversion Device for  

the Future 

Fuel cells attract attention from both the energy and environmental standpoints 
and appear to be one of the alternative energy sources capable of meeting 
future energy needs [40-42]. In general, fuel cells convert chemical energy 
stored in a fuel into electrical energy in a single step and produce electricity as 
long as fuel is supplied to the system. The main components of fuel cells are 
the anode, cathode, and an ion-conducting electrolyte. The basic principle 
underlying the operation of fuel cells is the catalytic splitting of the input fuel 
into electrons and ions as it passes over the anode. The generated electrons 
pass to the cathode by an external circuit and reduce the oxygen that passes 
over the cathode. The ions are transported to the cathode, where they combine 
with the oxide ions and generate the oxidized product. If the fuel is hydrogen, 
then water is formed [43]. Abundant organic raw materials such as alcohols 
(specifically methanol and ethanol), organic acids (formic acid), or glucose 
can also be used as fuels. Depending on the input fuel and electrolyte, different 
chemical reactions occur. The characteristic features of various types of fuel 
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cells are shown in Table 1. In the case of direct alcohol (methanol and ethanol) 
fuel cells, anion-exchange membranes can also be used. 

Fuel cells exhibit higher efficiency than internal combustion engines. If a 
fuel cell’s exhaust heat is exploited, the total efficiency can be even higher. 
The extractable power of a fuel cell (Pcell) is the product of the cell voltage 
(Vcell) and the cell current (Icell): Pcell = Vcell ×Icell. Although the ideal cell 
voltage is affected by the difference in the formal potentials of the oxidizer 
and fuel compounds (E◦(ox) − E◦(fuel)), irreversible losses in the voltage (or 
overpotential, η) as a result of kinetic limitations of the electron transfer 
processes at the electrode interfaces, ohmic resistances and concentration 
gradients, lead to decreased values. Therefore, Vcell = (E◦(ox) − E◦(fuel)) – η[40, 
42]. Similarly, the cell current is controlled by the electrode size, the ion 
permeability, and the transport rates across the membrane separating the 
cathode and anode compartments of the fuel cell (specifically, the rate of 
electron transfer at the respective electrode surfaces). These parameters 
collectively influence the fuel cell power, and so Vcell and Icell should be 
optimized for improved efficiency. Therefore, active electrocatalysts are 
needed to oxidize fuel at the anode and reduce oxygen/air at the cathode with 
low overpotentials to obtain high efficiency. 

1.4.1. Domestic and Commercial Uses of Fuel Cells  

Sir William Grove first demonstrated the conversion of hydrogen to electricity 
using an acid-electrolyte fuel cell in 1839 [40]. However, turning this idea into 
a practical means of energy conversion has taken several years. Through 
worldwide efforts over the last decade, the performance of fuel cells in various 
respects such as energy efficiency, volumetric and mass power density, and 
low temperature startup ability has achieved breakthrough progress, leading to 
the development of fuel cell technology that is beneficial to sustainable 
transportation and decentralized power developments [41].Direct methanol 
fuel cells (DMFCs) are used as a replacement for batteries in portable 
electronic devices including mp3 players, computers, and hearing aid devices. 
Substantial progress in the development of H2-fueled proton exchange 
membrane fuel cells (PEMFCs) has pushed them into the market by several 
main vehicle companies in 2014. For example, H2-fueled PEMFCs were used 
in a fuel cell engine with 3kW/L power density designed by Toyota (Japan) 
and in an engine module with 5kW/L power density designed by England 
Intelligent Energy EC200-192 [44].Electric vehicles that run on fuel cells 
exhibit quiet operation, a cold start at 243 K and negligible COx, NOx, and SOx 
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emissions [45].Another promising area where fuel cells can be used is small 
and large combined power and heating plants (or decentralized power 
sources)[41]. Both solid oxide fuel cells (SOFCs) and molten carbonate fuel 
cells (MCFCs) fall into this category. Small-range decentralized power plants 
that run on fuel cells are appropriate for household applications whereas larger 
decentralized power plants are utilized to supply heat and electricity to a more 
extensive area such as a village. 
 
1.4.2. Bioethanol as a Promising Fuel for Fuel Cells 

The term bioethanol describes the ethanol produced from biomass. At present, 
hydrogen is used as a promising fuel because of its high-energy density  
(32 kWh/kg). However, the storage and handling of hydrogen are problematic 
and so is the cost [45]. Several biofuels can serve as alternatives to hydrogen 
in the production of electricity in a fuel cell. These fuels include carbon-
containing liquids such as ethanol, methanol, biodiesel, di-methyl esters 
(DME) and Fischer-Tropsch liquids. There are two biofuels currently used 
around the world for transport purposes – bioethanol and biodiesel [46]. 
Between them, ethanol is a good substitute for hydrogen in terms of 
production, cost, storage, and handling, but is lacking in terms of energy 
density. Most importantly, the use of bioethanol requires only negligible 
changes to fuel cell vehicles and minimal adjustment to the fueling 
infrastructure. Additionally, it is a safer fuel since it ignites at much higher 
temperatures, resulting in fewer car fires and explosions in impact accidents. 
Also, ethanol is a colorless, odorless, clean burning liquid fuel that can be 
produced primarily by the fermentation of renewable resources, such as sugar 
cane, wheat, corn, or even straw, and it is presently the most scalable and 
easily deployable among liquid fuels. Other advantages include less toxicity 
and higher energy density (8.0 kWh/kg) than methanol (6.1 kWh/kg), lower 
reactivity in the atmosphere, negligible NOx, volatile organic compounds and 
SOx content, and no toxic benzene, toluene, ethylbenzene, or xylene (BTEX) 
additives which are found in other fuels as a result of the production process 
[47].All these advantages demonstrate that bioethanol is a good option for fuel 
cells. 
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Table 1. Characteristic features of various fuel cells 

Electrochemical device 
Operating 

temp. (K) 
Electrolyte Fuel Oxidant Anode/Cathode Reactions 

Alkaline fuel cell (AFC) 303-423 45% KOH Hydrogen O2/air H2 + 2OH- → 2H2O + 2e- 
O2 + 2H2O + 4e- → 4OH- 

Proton exchange 
membrane fuel cell 

(PEMFC) 
303-353 

H+-ion exchange 
membrane 

(e.g., Nafion) 
Hydrogen O2/air H2 → 2H+ + 2e- 

O2 + 4H+ + 4e- → 2H2O 

Direct methanol fuel cell 
(DMFC) 303-353 

H+-ion exchange 
membrane 

(e.g., Nafion) 
Methanol O2/air CH3OH + H2O → CO2 + 6H+ + 6e- 

O2 + 4H+ + 4e- → 2H2O 

Direct ethanol fuel cell 
(DEFC) 303-333 

H+-ion exchange 
membrane 

(e.g., Nafion) 
Ethanol O2/air C2H5OH + 3H2O → 2CO2 + 12H+ + 12e- 

O2 + 4H+ + 4e- → 2H2O 

Glucose fuel cell (GFC) 303-333 
 

H+-ion exchange 
membrane 

(e.g., Nafion) 
Glucose O2/air C6H12O6 + 6H2O → 6CO2 + 24H+ + 24e- 

O2 + 4H+ + 4e- → 2H2O 

Direct formic acid fuel 
cell (DFAFC) 303-363 

H+-ion exchange 
membrane 

(e.g., Nafion) 
Formic acid O2/air HCOOH → CO2 + 2H+ + 2e- 

O2 + 4H+ + 4e- → 2H2O 

Molten carbonate fuel 
cell (MCFC) 923-973 Alkali carbonate 

mixture Hydrogen O2/air H2 + CO3
2- → H2O + CO2 + 2e- 

O2 + 2CO2 + 4e- → 2CO3
2- 

Solid oxide fuel cell 
(SOFC) 1073-1273 Yttria-stabilized 

zirconia Hydrogen O2/air H2 + O2- → H2O + 2e- 
O2 + 4e- → 2O2- 
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1.4.3. Direct Ethanol Fuel Cells – Status and Challenges 

Direct ethanol fuel cells (DEFCs), characterized by oxidation of ethanol at the 
anode and reduction of oxygen at the cathode, can be most promising 
candidates for portable, mobile, and stationary applications [48]. In recent 
years, various DEFC configurations have been considered and their 
performance is being investigated. These include proton exchange membrane 
DEFCs (PEM-DEFCs), anion-exchange membrane DEFCs (AEM- DEFCs) 
and alkaline-acid DEFCs (AA-DEFCs) [49]. The basic principle underlying 
the operation of all three DEFCs is the same, and all the cell configurations are 
under development. A comprehensive review of past research on the 
development of DEFCs, including catalytic aspects, ion-exchange membranes, 
and single-cell design and performance has been reported in recent articles 
[6,49-55]. According to the reports, the AEM-DEFCs and AA-DEFCs 
configurations have superior advantages over the PEM-DEFCs in terms the 
utilization of non-Pt electrocatalysts, inexpensive anion exchange membranes, 
enhanced kinetics of ethanol oxidation and oxygen reduction under alkaline 
media, and high efficiency. For example, the highest peak power density 
reported so far for AEM-DEFCs with PdNi/C as the anode and FeCo/C as the 
cathode is 160 mW/cm2 at 353 K, whereas for PEM-DEFCs with PtSn/C as 
the anode and Pt/C as the cathode it is only 79.5 mW/cm2 at 363 K [56-57]. In 
the AA-DEFCs configuration, a maximum power density of 360 mW/cm2 at 
333 K using PdNi/C at the anode with a loading of 1.0 mg/cm2 and Pt/C at the 
cathode with a loading of 3.9 mg/cm2 was reported [49,58]. Although 
tremendous efforts have been expended on developing DEFCs, the power 
output of the AEM-DEFCs and AA-DEFCs must be substantially improved 
before widespread commercialization. This is possible through innovative cell 
design, three-dimensional architecture electrode configurations, and the 
continuous research and development of the key materials and components 
used. Advanced anode/cathode electrocatalysts including monolayer/single-
atom catalysts, nanometer-film catalysts, controlled-crystal-shape catalysts, 
and non-Pt catalysts promise to meet the low-cost goal. Advanced ion-
exchange membranes with desirable properties such as high ionic 
conductivity, high thermal and chemical stability, ethanol permeability, 
durability, water uptake, water diffusivity, and an electro-osmotic drag 
coefficient also need to be developed in order to achieve better ion-transport 
properties. The scale-up production techniques need to be developed 
simultaneously so that the gap between the current state of the art and the 
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targets can be bridged. Thus, the targets of cost and durability properties can 
be achieved. 

2. SOLAR REACTOR AND SOLAR-ENERGY-DRIVEN 

FERMENTATION 

2.1. Design and Fabrication of the Solar Reactor  

The solar reactor was designed and fabricated to perform either continuous flow 
or batch fermentation and to continuously separate the aqueous ethanol solution 
from the yeast bed by an in situ evaporation-condensation mechanism (See 
Figure 1 for a detailed design and depiction of the components of the solar 
reactor) [38-39]. 

The selected geometry and the dimensions are the most crucial aspects of 
the operation of the reactor for the effective production and separation of 
ethanol. The reactor was fabricated using aluminum blocks so that it was 
lightweight and non-corrosive. The aluminum blocks used for fabricating the 
bottom (325 x 275 x 120 mm, length, width, and height, respectively) and top 
(325 x 275 x 6.3 mm) portions of the reactor were purchased from Jack Eini 
International (Metals) Trade Ltd., Israel. The reactor was fabricated in the 
mechanical workshop of Bar-Ilan University. A nearly right-angle triangular 
geometry was selected (Figure 1e) and the height of the reactor was kept much 
lower than the base (127 mm height and 275 mm base) to facilitate the 
condensation of ethanol vapor (from the first chamber, Figure 1c) onto the top 
glass surface (Figure 1a). Such geometry facilitated the free flow of the 
condensate from the top surface of the reactor to the second chamber, where 
ethanol was collected (Figure 1c). As depicted in Figure 1, the ethanol 
collection chamber (second chamber) is fully separated from the fermentation 
chamber (first chamber) by an aluminum wall. The inlet of the reactor is 
connected to the feed reservoir and the ethanol outlet valve is opened to collect 
the product ethanol at regular time intervals (Figure 1d). The analyte can also 
be collected from the yeast bed without opening the reactor lid.  
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2.2. Principle of Operation of the Solar Reactor 

The temperature of the normal boiling point (T, °C) is related to the vapor 
pressure (P, mm Hg) of ethanol (the gas phase in equilibrium with the 
condensed phase) according to the Antoine equation [59], 

 
P = 108.04494 – (1554.3/222.65+T). (1) 
 
The T vs. P plot for ethanol is depicted in Figure 2. The evaporation-

condensation process occurs at a reaction temperature (25-35°C) much lower 
than the boiling point of ethanol (78°C). Although the pressure during 
fermentation was not monitored using a pressure gauge, it can be concluded 
that the pressure in the reactor is much lower than the atmospheric pressure 
[38]. 

2.3. Solar-Energy-Driven Simultaneous Saccharification and 

Fermentation (SSF) of Starch to Bioethanol  

Starch is an excellent carbon source and a major energy-storage molecule of 
many economically important crops. The local cultivation of renewable starch 
sources, such as potato and tapioca, makes it economically attractive; however, 
starch must be hydrolyzed to glucose before it is fermented to ethanol [60-61]. 
The chemical structure of starch is composed of 20-25% amylose (1,4-α-linked 
glucosyl units in linear form, water insoluble) and 75-80% amylopectin (1,6-α-
linked branched, water soluble). Five groups of enzymes, which comprise 30% 
of the world’s enzyme production, play a key role in the hydrolysis of starch 
[62]. Among them, α-amylase cleaves the 1,4-α-linked glucosyl units of 
amylose, yielding glucose. Likewise, amyloglucosidase (γ-amylase) cleaves the 
1,6-α-linkages in amylopectin and the terminal 1,4-α-linked glucosyl units, 
producing glucose [38].α-Amylase derived from microbial sources has replaced 
the chemical hydrolysis of starch in starch-processing industries [63]. Thermal 
stability and alkaline characteristics are important features of amylase isolated 
from alkalophilic organisms [64]. The microbial α-amylases for industrial 
processes are derived mainly from Bacillus subtilis, Bacillus amyloliquefaciens, 
and Bacillus licheniformis [65]. 

Conventionally, the gelatinization and liquefaction of starch are carried 
out enzymatically at high temperatures of 90-130°C for 15 min followed by 
enzymatic saccharification to glucose [61]. The glucose so formed from starch 
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is subsequently converted to ethanol via alcoholic fermentation by yeast. This 
two-step process, which involves consecutive enzymatic hydrolysis and fungal 
fermentation, can be made more economical by coupling the enzymatic 
hydrolysis of starchy substrates and fungal fermentation of the derived glucose 
into a single step by a simultaneous saccharification and fermentation (SSF) 
process. In the SSF process, the stages are the same as in separate hydrolysis 
and fermentation systems, but both are performed in the same reactor [38,66-
68].This causes less accumulation of sugars within the reactor, a greater yield 
of ethanol, and a higher saccharification rate [69]. Another advantage of this 
approach is that only a single fermentor is needed for the entire process, which 
decreases the investment costs [64]. In addition, the presence of ethanol in the 
culture medium causes the mixture to be less vulnerable to undesired 
microorganism invasion [70]. 

 

 

Figure 1. Open reactor (a), fermentation chamber loaded with baker's yeast on 
activated carbon cloth (b), the bottom surface of the reactor with two chambers  

(c), a complete system of the solar reactor (d), side view of the reactor (e). [Tabah, B.; 
Pulidindi, I. N.; Chitturi, V. R.; Arava, L. M. R.; Gedanken, A. Utilization of solar 

energy for continuous bioethanol production for energy applications. RSC Adv. 

[Online] 2016, 6, 24203-24209.] Adapted by permission of The Royal  
Society of Chemistry. 
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Figure 2. The vapor pressure of ethanol (mm Hg) vs. normal boiling point temperature 
(°C). [Tabah, B.; Pulidindi, I. N.; Chitturi, V. R.; Arava, L. M. R.; Gedanken, A. Solar-

Energy Driven Simultaneous Saccharification and Fermentation of Starch to 
Bioethanol for Fuel-Cell Applications. ChemSusChem [Online] 2015, 8, 3497-3503.] 

Reproduced by permission of John Wiley and Sons, Inc. 

As stated before, solar energy can be an important alternative energy 
source if it is harnessed for heating applications. For the efficient utilization of 
solar energy and to make the SSF process cost-effective, our work focuses on 
using solar thermal energy for the conversion of potato starch into ethanol in a 
single-step process in the solar reactor. An aqueous starch solution (5 wt%, 1.6 
L) was fed into the reactor charged with S. cerevisiae (75 g instant baker’s 
yeast purchased from a local supermarket) and amylase (a mixture of 2.5 mL 
amyloglucosidase from Aspergilus niger and 2.5 mL α-amylase from Bacillus 

amyloliquefaciens) and was covered with an activated carbon cloth (Kynol®, 
90 g/m2, 0.43 mm thick, >1800 m2/g specific surface area) (Figure 1b). The 
yeast was not supplemented with any additional nutrients, and no 
hydrothermal pretreatment was applied before the SSF process. The ethanol 
produced was evaporated to the top flat glass surface of the reactor which 
allowed the solar radiation into the bed. The ethanol droplets condensed on the 
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glass plate were collected in the second chamber of the reactor which has an 
outlet for ethanol collection (Figure 1). 

The process was monitored for over two months (63 days) in the solar 
reactor at 30-35°C. The analytes were collected at regular time intervals and 
analyzed for the quantification of ethanol using proton nuclear magnetic 
resonance (1H NMR) spectroscopy and gas chromatography (GC). The change 
in ethanol yield (wt%) with time (deduced from 1H NMR analysis) is depicted 
in Figure 3.  

 

 

Figure 3. Solar-energy-driven bioethanol production from 5 wt% starch solution at 
different points in time. 

The concentration of ethanol varied in the range 1.8-2.6 wt% over the 
course of the study. By the 63rd day, 38 g of ethanol were collected in total, 
which corresponds to 84% of the theoretical yield of ethanol from starch. The 
mass-balance calculations and detailed gas chromatograms of SSF products 
collected at regular time intervals were reported by Tabah et al.[38]. Table 2 
shows the weekly ethanol concentration in the products, determined from both 
1H NMR and GC analysis. The concentrations of analytes calculated by the two 
methods matched, confirming the authenticity of the methodology used for 
ethanol estimation. 
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Table 2. Comparison of ethanol concentrations (SSF product) deduced 

from GC and 1H NMR analysis 

SSF product 
Ethanol concentration (M) 

GC 1H NMR 

7th day 0.54 0.48 
14th day 0.50 0.49 
21st day 0.60 0.55 
28th day 0.53 0.56 
35th day 0.57 0.54 
42nd day 0.51 0.49 
49th day 0.50 0.48 
56th day 0.50 0.46 
63rd day 0.42 0.39 

 
For the quantification of ethanol from GC, the chromatograms were 

recorded and the peak responses were measured. Product identification was 
performed by comparing the retention time of the analyte with that of the 
authentic sample. The ethanol yield was calculated from the calibration plot 
deduced from standard ethanol [38]. The yield of ethanol (gethanol/gstarch) was 
calculated from the 1H NMR spectra of the analytes using sodium formate 
(HCOONa, m = 20 mg, n = 0.294 mmol) as an internal standard in deuterium 
oxide (D2O, 200 μL) [34, 71]. The formula used to calculate the amount of 
ethanol in a given analyte is 

 
nEtOH = (nHCOONa x IEtOH)/(3 x IHCOONa), (2) 

 
where nEtOH is the number of moles of ethanol in the analyte, nHCOONa is the 
number of moles of HCOONa added as an internal standard, IHCOONa is the 1H 
NMR integral of HCOONa (1H), set to 1, and IEtOH is the 1H NMR integral of 
ethanol peak centered at 1.19 ppm (-CH3; 3H). 

Using nEtOH, the amount of ethanol (g) in the analyte was calculated 
according to the expression, 

 
gEtOH=molecular weight of EtOH x nEtOH.  (3) 

 
Using the amount of ethanol in a given volume of analyte, the wt% of 

ethanol in the total volume of the product was calculated using 
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Yield of ethanol (wt%) = (gEtOH/total volume of the product) x 100. (4) 
 
1H NMR spectroscopy was used for both quantitative and qualitative 

analyses. Representative 1H NMR spectra of the analytes collected on the 7th, 
14th, 21st, and 28th days of the SSF process are shown in Figure 4.  

 

 

Figure 4. 1H NMR spectra of the SSF product on the (a) 7th, (b) 14th, (c) 21st, and (d) 
28th days (Inset shows the ethanol peaks, a 3H (t) centered at 1.19 ppm and a 2H (q) centered at 3.66 ppm). 
[Tabah, B.; Pulidindi, I. N.; Chitturi, V. R.; Arava, L. M. R.; Gedanken, A. Solar-

Energy Driven Simultaneous Saccharification and Fermentation of Starch to 
Bioethanol for Fuel-Cell Applications. ChemSusChem [Online] 2015, 8, 3497-3503.] 

Reproduced by permission of John Wiley and Sons, Inc. 

Signature peaks of ethanol centered at 1.19 ppm (3H, t) and 3.66 ppm 
(2H, q) were observed in all the analytes (Figure 4a-4d). The singlet peak at 
8.40 ppm originates from the internal standard HCOONa, and the peak at 4.80 
ppm corresponds to the solvent. No reaction by-products (glycerol or acetic 
acid) were observed in the analytes, indicating the purity of the process (only 
aqueous ethanol). 1H NMR spectra of authentic glycerol and acetic acid were 
reported by Tabah et al. for comparison [38]. 

In addition to these quantitative methods, the SSF product was also 
analyzed qualitatively by carbon (13C) NMR spectroscopy. Figure5 shows the 
13C NMR spectra of the SSF products (collected biweekly) in comparison to 
authentic ethanol. As Figure5a indicates, the intense signals seen in all the 

Complimentary Contributor Copy



Betina Tabah, Indra Neel Pulidindi, Venkateswara Rao Chitturi et al. 18 

samples (Figure 5b-5f) at 17 and 58 ppm are the characteristic peaks of 
ethanol.  

 

 

Figure 5. 13C NMR spectra of (a) authentic ethanol and the SSF product collected  
on the (b) 7th, (c) 21st, (d) 35th, (e) 49th, and (f) 63rd days. 

No peaks other than ethanol were observed in the reaction products. This 
indicates that the reaction product is pure aqueous ethanol and is devoid of the 
reactant (starch), reaction intermediate (glucose), and usual secondary 
metabolites of fermentation (glycerol and acetic acid). The13C NMR spectra of 
authentic starch (peaks at 61.1, 71.6, 72.3, 73.8, 77.1, and 100 ppm), glucose 
(peaks at 61.5, 70.6, 72.1, 73.7, 74.9, 76.8, 92.9, and 96.7 ppm), glycerol (peaks 
at 62.9 and 72.3 ppm) and acetic acid (peaks at 19.6 and 175.8 ppm) are shown 
in Figure6 for comparison. 

From the green chemistry point of view, the solar-energy-driven SSF 
process has numerous advantages. The reaction time is short, due to the 
coupling of the hydrolysis and fermentation stages into one stage. The SSF 
process is more economical because both the hydrolysis and fermentation 
stages are performed in the same reactor. The process requires no external 
source of heating or additional energy and produces no polluting effluent. 
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Figure 6. 13C NMR spectra of authentic (a) starch, (b) glucose, (c) glycerol,  
and (d) acetic acid. 

2.4. The Potential of Starch-Based Bioethanol for Application in 

Fuel Cells 

The SSF process was scaled up to 15 wt% starch to produce higher 
concentrations of bioethanol (1.3 M, 6 wt%) to be evaluated as fuel in DEFCs 
[38].The experimental setup is schematically shown in Figure 7. The ethanol 
produced in the solar reactor was separated from the broth soon after its 
formation by an evaporation-condensation process in the fermentor. The 
potential of the as-produced bioethanol was evaluated by performing 
electrochemical measurements using a three-electrode one-compartment 
electrochemical glass cell assembled with a glassy carbon disk as the working 
electrode, Ag/AgCl as the reference, and Pt as the counter electrode. A cell 
containing 0.5 M H2SO4 + 1.3 M bioethanol was used as the electrolyte. The 
working electrode was fabricated by coating an ultrasonically dispersed 
suspension of Pt/C, 5 wt% Nafion, and isopropanol on the polished glassy 
carbon disk electrode (0.071 cm2). The electrode contained about 14 μgPt/cm2.  
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Figure 7. Schematic representation of the experimental setup (solar-energy-driven SSF 
of starch to produce bioethanol and its use as fuel in DEFCs to produce electricity). 

The DEFC measurements were performed using an in-house-built fuel cell 
test station at different temperatures (303, 333, and 363 K) to evaluate the 
power densities. A commercial 40 wt% Pt/C (E-TEK) was used as an 
electrocatalyst (both anode and cathode) and gas diffusion electrodes were 
fabricated according to the previously reported procedure [72-73]. Linear 
sweep voltammograms recorded with the Pt/C catalyst in 0.5 M H2SO4 + 1.3 
M bioethanol at a scan rate of 25 mV/s are shown in Figure8a. A well-defined 
ethanol oxidation peak was observed at 0.75 V with no additional impurity 
peaks. The voltammograms recorded with as-produced bioethanol and 
authentic ethanol were similar, with comparable peak currents (ca. 310 
mA/mgPt). These aspects clearly indicate the high purity level of as-produced 
bioethanol from starch.  

The single-cell DEFC performance with as-produced 1.3 M bioethanol 
was tested at different temperatures and the I-V performance curves are 
presented in Figure 8b. The open circuit potential (OCP) of the cell was found 
to be ~0.75 V (65% thermodynamic efficiency) where the effect of the 
temperature on the OCP was small. However, the cell performance increased 
with temperature due to the enhanced kinetics of ethanol oxidation at the 
anode and oxygen reduction at the cathode. At 303, 333, and 363 K, the cell 
exhibited limiting current densities of 116, 155, and 212 mA/cm2, respectively, 
corresponding to the maximum power densities of 25.6, 33.3, and 47.7 
mW/cm2, respectively. In conclusion, the as-produced bioethanol from the 
solar-energy-driven SSF process of 15 wt% starch was successfully 
demonstrated as a potential fuel for DEFCs [38]. 
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Figure 8. (a) Linear sweep voltammograms of the Pt/C catalyst for ethanol oxidation 
and (b) polarization and power density curves at 2 mg/cm2 catalyst loading for Pt/C (40 
wt%, E-TEK) on both an anode and cathode at different temperatures (Anode feed: 1.3 

M bioethanol at 1 mL/min, cathode feed: pure humidified oxygen at 200 mL/min). 
[Tabah, B.; Pulidindi, I. N.; Chitturi, V. R.; Arava, L. M. R.; Gedanken, A. Solar-

Energy Driven Simultaneous Saccharification and Fermentation of Starch to 
Bioethanol for Fuel-Cell Applications. ChemSusChem [Online] 2015, 8, 3497-3503.] 

Reproduced by permission of John Wiley and Sons, Inc. 

2.5. Continuous-Flow Bioethanol Production in the Solar 

Reactor Using 10-40 wt% Glucose Feed  

Following the successful results with solar-energy-driven SSF of starch, the 
batch process of bioethanol production was further developed to a continuous-
flow process [39]. Continuous-flow solid-state glucose fermentation was 
performed by feeding the reactor with 2 L of either 10, 20, 30 or 40 wt% 
aqueous glucose solutions. The reactor was charged with S. cerevisiae (75 g 
instant baker’s yeast) covered with activated carbon cloth (Kynol®, 90 g/m2, 
0.43 mm thick, >1800 m2/g specific surface area) (Figure 1b) into which the 
glucose solution was continuously fed (2.8 mL/h flow rate) (Figure 1d). It is 
important to note that the yeast was not supplemented with any additional 
nutrients and the pH of the glucose solutions was 7. As in the case of the solar-
energy-driven SSF of starch, the fermentation took place in the first chamber 
(Figure 1c) and the ethanol produced evaporated to the top flat glass surface of 
the reactor, which allowed the solar radiation into the bed (Figure 1a). The 
ethanol droplets that condensed on the glass plate were collected in the second 
chamber of the reactor, which had an outlet for ethanol collection (Figure 1c).  

For each glucose solution, the process was monitored for a month in the 
solar reactor at ~20°C.The fermentation was continuous, most of the 
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evaporation occurred during the day and only a negligible amount occurred at 
night. The analytes were collected at regular time intervals and analyzed for 
the quantification of ethanol using 1H NMR spectroscopy, GC, and high 
performance liquid chromatography (HPLC). The concentrations of analytes 
determined by 1H NMR, GC, and HPLC analyses matched, validating the 
methodology used for ethanol estimation [39]. 

 

 

Figure 9. Time on stream studies of ethanol yield (wt%) with 10-40 wt% glucose feed 
solutions. [Tabah, B.; Pulidindi, I. N.; Chitturi, V. R.; Arava, L. M. R.; Gedanken, A. 

Utilization of solar energy for continuous bioethanol production for energy 
applications. RSC Adv. [Online] 2016, 6, 24203-24209.] Adapted by permission  

of The Royal Society of Chemistry. 

The maximum theoretical yield of ethanol expected from the fermentation 
of 1.0 g glucose is 0.51 g [74].However, due to several operative metabolic 
pathways in the yeast, secondary metabolites form in addition to ethanol, such 
as glycerol and acetic acid, reducing the efficiency of the process [39]. The 
concentration of aqueous ethanol (ethanol yield, wt%) collected at regular time 
intervals using 10-40 wt% glucose feed is depicted in Figure 9. High ethanol 
yields (averages of 91, 86, 89, and 88% of the theoretical yield, respectively) 
indicate the atom efficiency of the process.  
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It is noteworthy that the yeast bed was always in solid-state condition and 
glucose was the only nutrient supplied for the yeast. There was no effluent in 
the reactor, which made it very convenient to change the feed solutions 
between the experiments. Moreover, there was no loss in the activity of the 
yeast even after two months of continuous operation of the process. Figure 10 
shows the HPLC chromatograms of the fermentation product (collected on the 
21st day) using 10-40 wt% glucose solutions in comparison to authentic 
ethanol (0.5 M, retention time of ~25 min). The concentrations of the produced 
bioethanol were 1, 2, 3, and 4 M from 10, 20, 30, and 40 wt% glucose 
fermentation, respectively. These high ethanol concentrations indicate, again, 
the atom efficiency of the process.  

 

 

Figure 10. HPLC chromatogram of (a) authentic ethanol and fermentation product 
(collected on 21st day) using (b) 10 wt%, (c) 20 wt%, (d) 30 wt%, and (e) 40 wt% 

glucose solutions. 

In addition to these quantitative methods, the fermentation product was 
also analyzed by 13C NMR spectroscopy. Figure 11 shows the representative 
13C NMR spectra of the fermentation products obtained from 10-40 wt% 
aqueous glucose feed solutions (collected on the 10th day) in comparison to 
authentic ethanol. As Figure 11a indicates, the intense signals seen in all 
samples (Figure 11b-11e) at 17 and 58 ppm are the characteristic peaks of 
ethanol. No peaks other than ethanol were observed in the reaction products. 
The absence of the reactant (glucose, Figure 6b) or yeast in the product 
signifies the role of solar radiation in separating the aqueous ethanol formed in 
the fermentation chamber by means of evaporation and condensation. The 
absence of typical peaks of the usual secondary metabolites, glycerol and 
acetic acid (Figure 6c-6d), again indicates the product purity and its possible 
direct use for energy-related applications such as fuel cells. 
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Figure 11. 13C NMR spectra of (a) authentic ethanol and bioethanol collected on the 10th 
day of the fermentation of (b) 10 wt% glucose solution (1.1 M), (c) 20 wt% glucose 

solution (1.8 M), (d) 30 wt% glucose solution (3.0 M), and (e) 40 wt% glucose solution 
(4.0 M). [Tabah, B.; Pulidindi, I. N.; Chitturi, V. R.; Arava, L. M. R.; Gedanken, A. 

Utilization of solar energy for continuous bioethanol production for energy applications. 
RSC Adv. [Online] 2016, 6, 24203-24209.] Adapted by permission of  

The Royal Society of Chemistry. 

One of the main issues associated with bioethanol production is its 
purification from fermentation broth [75]. Various approaches are being 
studied for the extraction and distillation of ethanol (such as liquid-liquid 
extraction using ionic liquids, the use of microfiltration, and the substitution of 
membrane technology for current ethanol dewatering processes) [75-
76].Although further distillation is needed to attain anhydrous ethanol, the 
unique advantage of the use of solar energy in the current methodology is that 
no additional extraction process is required to separate the aqueous ethanol 
from the fermentation broth. The formed ethanol in the yeast bed is 
simultaneously evaporated and condensed to the glass panel of the reactor, 
from which it flows down into a separate chamber with an outlet for ethanol 
collection (Figure 1). The pressure in the reactor, which is lower than 
atmospheric pressure, facilitates the evaporation of ethanol at a temperature 
much lower than its boiling point (78.5°C). The relation between the lowering 
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of the boiling point of ethanol and the pressure of its vapor, as well as the 
operation principle of the reactor, were discussed above, in section 2.2. 

Albeit solar energy is unstable in terms of limited day hours and seasons, 
the present study demonstrates the operability and the sustainability of the 
process even in the winter season with its lower temperatures (~20°C). The 
superior features of the current approach for bioethanol production are (i) the 
bioethanol production process is a continuous flow which could be easily 
adopted for industrial applications for large scale production, (ii) high 
concentrations of bioethanol (4 M) are obtained by feeding 40 wt% aqueous 
glucose solution into the reactor, (iii) it uses solar thermal energy for 
fermentation and separation of the formed ethanol, (iv) it achieves high 
ethanol yields without electricity consumption, making the whole process 
green, sustainable, and most importantly cost effective, (v) it uses the same 
microorganism (without any additional nutrients) for a long time (two months) 
without loss in the activity, (vi) no polluting effluent is produced due to the 
solid-state fermentation, and (vii) it demonstrates the potential of the produced 
bioethanol as fuel in DEFCs. Thus, this process is economically feasible, 
having no energy requirement other than solar energy -which is free- for 
bioethanol production. 

2.6. Application of Bioethanol Produced from Solar-Energy-

Driven Glucose Fermentation for Electricity Generation 

Using Fuel Cells 

2 M ethanol that was produced through solid-state continuous-flow 
fermentation of 20 wt% aqueous glucose solution was separated from the 
broth soon after its formation by an evaporation-condensation process and 
tested in alkaline-acid direct ethanol fuel cells (AA-DEFCs) for its potential as 
fuel [39]. AA-DEFCs have drawn much attention due to the higher power 
density, faster kinetics of ethanol oxidation in alkaline media, lower activation 
loss and faster kinetics of hydrogen peroxide reduction in acidic media due to 
two-electron transfer, use of non-Pt electrocatalysts, lower fuel cross-over and 
higher theoretical cell voltage (2.52 V) than other types of fuel cells 
[49,58,77]. These fuel cells are characterized by oxidation of ethanol at the 
anode (CH3CH2OH + 12OH− → 2CO2 + 9H2O + 12e−; Eo= −0.74 V) and 
reduction of hydrogen peroxide at the cathode (6H2O2 + 12H+ + 12e− → 
12H2O; Eo= +1.78 V).  
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Different electrocatalysts were explored to improve the kinetics of redox 
reactions and thereby the power density [49, 78, 79]. In the present work, 
PdNi/C was used for the oxidation of bioethanol at the anode and PdAu/C for 
the reduction of hydrogen peroxide at the cathode. The use of PdAu/C instead 
of Pt/C circumvents the decomposition of hydrogen peroxide into oxygen and 
water [80-81]. Moreover, it is less expensive than Pt [53].The current green, 
sustainable, and cost-effective approach is schematically summarized in 
Figure 12. The system is composed of alkalized bioethanol and acidified 
H2SO4 compartments separated by a cation conducting membrane. In both the 
anode and cathode compartments, 3D-structured electrodes were used to 
facilitate the diffusion of reactant species and also to improve the 
electrochemically active surface area for redox reactions. 

 

 

Figure 12. Schematic summary of the current green, sustainable, and cost-effective 
approach (solar-energy-driven continuous-flow glucose fermentation to produce 

bioethanol and AA-DEFCs measurements using as-produced bioethanol as fuel to 
produce electricity). [Tabah, B.; Pulidindi, I. N.; Chitturi, V. R.; Arava, L. M. R.; 
Gedanken, A. Utilization of solar energy for continuous bioethanol production for 

energy applications. RSC Adv. [Online] 2016, 6, 24203-24209.] Reproduced by 
permission of The Royal Society of Chemistry. 
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The as-synthesized bimetallic palladium electrocatalysts (30 wt% Pd1Ni1/C 
and 50 wt% Pd1Au1/C) were used to fabricate 3D-structured anode and cathode, 
where the active material loading was 1.0 and 3.5 mg/cm2, respectively. During 
the operation of the fuel cells, alkalized bioethanol (2 M bioethanol + 5 M 
NaOH) was fed at the anode and acidified H2O2 (4 M H2O2 + 1 M H2SO4) was 
fed at the cathode. The flow rates of both bioethanol and H2SO4 were 
maintained at 2 mL/min and the performance of the fuel cells was measured at 
303 and 333 K. The membrane electrode assembly (MEA) was conditioned at a 
constant current density until the open circuit voltage (OCV) became steady and 
then current-voltage (I-V) polarization curves were recorded by applying a 
potential from OCV to 0.2 V.  

 

 

Figure 13. Current-voltage (I-V) polarization and power density curves recorded at 303 
and 333 K. [Tabah, B.; Pulidindi, I. N.; Chitturi, V. R.; Arava, L. M. R.; Gedanken, A. 

Utilization of solar energy for continuous bioethanol production for energy 
applications. RSC Adv. [Online] 2016, 6, 24203-24209.] Adapted by permission of  

The Royal Society of Chemistry. 

I-V polarization and power density curves of AA-DEFCs operated at 303 
and 333 K are shown in Figure 13. The OCV was observed to be around 1.65 
V (i.e.,65.5% voltage efficiency) at both operating temperatures. A maximum 
power density of 330 mW/cm2 was observed at 303 K. The OCV and power 
density observed in AA-DEFCs configuration were higher than the values 
reported in the literature for acid DEFCs and alkaline DEFCs [53-55]. The 
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improved performance can be attributed to the elimination of the mixed-
potential phenomenon. When the operating temperature increased from 303 to 
333 K, the power density increased from 330 to 410 mW/cm2. The enhanced 
performance is attributed to the faster electrochemical kinetics of the redox 
(ethanol oxidation and H2O2 reduction) reactions at the electrode 
compartments, improved membrane conductivity, increased reactant delivery 
and product removal rates. The performance values observed in this study are 
higher than the literature values [39, 58, 82-84]. This is possibly due to the 
high catalytic activity of the bimetallic Pd electrocatalysts and the 3D-
structured electrode configuration.  

In conclusion, the ethanol produced from 20 wt% glucose feed (2 M) was 
successfully demonstrated as a potential fuel for DEFCs with current and 
power density values as high as 700 mA/cm2 and 330 mW/cm2 at a modest 
OCV of 1.65 V [39]. Thus, a new avenue was explored for decentralized 
power supply based on solar energy. Future efforts should focus on the direct 
conversion of marine and terrestrial biomass into ethanol using the same 
strategy. The utilization of solar energy -which is renewable, clean, and 
sustainable- for bioethanol production is surely a significant leap towards the 
realization of an industrially-adoptable process. 

 

 

Figure 14. 13C NMR spectra of the samples collected from the broth on (a) 7th day and 
(b) 60th day. [Tabah, B.; Pulidindi, I. N.; Chitturi, V. R.; Arava, L. M. R.; Gedanken, 
A. Solar-Energy Driven Simultaneous Saccharification and Fermentation of Starch to 
Bioethanol for Fuel-Cell Applications. ChemSusChem [Online] 2015, 8, 3497-3503.] 

Reproduced by permission of John Wiley and Sons, Inc. 
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2.7. In Situ Bioconversion of Glycerol to 1,3-Propanediol by  

S. Cerevisiae in the Solar Reactor  

In order to monitor the SSF process of starch and to determine the reaction 
intermediates and by-products, analytes were collected from the fermentation 
broth (first chamber of the solar reactor, Figure 1c) at the beginning (7th day) 
and end(60th day) of the process [38]. The 13C NMR spectra of these samples 
are shown in Figure14. As expected, glucose, glycerol, and ethanol were 
present in the sample from the 7th day (Figure14a). The chemical composition 
of the 60th day analyte from the broth was quite surprising as no trace of 
glycerol was observed. Interestingly, instead of glycerol, its reduced product 
1,3-propanediol(1,3-PDO) was observed (Figure14b). The 13C NMR spectrum 
of the authentic 1,3-PDO was reported by Tabahet al. for comparison [38]. 

1,3-PDO is a value-added product usually produced by the reduction of 
glycerol [85].It has recently received attention as a high-value specialty 
chemical used primarily in the preparation of polyester fibers, films, and 
coatings [86]. In 2012, the global demand for 1,3-PDO was 60.2 kt with a 
market value of $2.61/kg [87]. Considering 1,3-PDO is used in the textile 
industry, food packaging, lubricants, and medicinal usage, demands will 
continue to rise [88]. By 2019, the global demand is expected to reach 150 kt 
and the price is estimated to increase to $3.73/kg [87]. The high price of 1,3-
PDO is indicative of the economic sustainability of the glycerol conversion 
process (pure glycerol: $0.66/kg; crude glycerol: $0.11/kg) [87]. 

The selective conversion of glycerol to 1,3-PDO is still regarded as a 
challenging process [89].Although many microorganisms are able to 
metabolize glycerol in the presence of external electron acceptors (respiratory 
metabolism), few are able to do so fermentatively (i.e., in the absence of 
electron acceptors). The fermentative metabolism of glycerol has been studied 
in great detail in several species of the Enterobacteriaceae family (such as 
Citrobacter freundii and Klebsiella pneumoniae). The dissimilation of glycerol 
in these organisms is strictly linked to their capacity to synthesize the highly 
reduced product 1,3-PDO [90].The potential for using these organisms at the 
industrial level is limited due to their pathogenicity, the requirement of strict 
anaerobic conditions, the need for rich nutrient supplementation, and the lack 
of availability of genetic tools and the physiological knowledge necessary for 
their effective manipulation [91-92]. 

The use of microorganisms that are amenable to industrial applications, 
such as S. cerevisiae, is highly desirable. To the best of our knowledge, this is 
the first report on the baker’s yeast potential to metabolize glycerol to 1,3-
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PDO under the anaerobic conditions in the solar reactor. Besides 1,3-PDO, the 
SSF reaction product ethanol was also observed in the 60th day sample (Figure 
13b). It is important to note that no traces of starch or glucose were observed 
in the sample, indicating the complete conversion of starch (see Figure 6 for 
the 13C NMR spectra of authentic starch and glucose).  

Synthesizing 1,3-PDO by biological means is extremely important, 
because it is comparatively more environment-friendly than chemical 
conversions and, from an economical perspective, it is generally more 
advantageous since milder conditions are used, less energy is required, and 
greater yields are attainable for specific products. Furthermore, pursuing the 
biological route toward 1,3-PDO production is particularly appealing since it 
utilizes renewable feedstock and cultivation is performed at much lower 
temperatures and pressures, and generates no toxic by-products [86,93-94]. 

Following this research, which demonstrated in situ bioconversion of 
glycerol (an industrial waste) to 1,3-PDO (a value-added chemical) by S. 

cerevisiae (biocatalyst) in the solar reactor, various glycerol fermentation 
conditions were tested at different temperatures to optimize the process for the 
production of 1,3-PDO from glycerol. Accordingly, under anaerobic 
fermentation at 25°C, 42.3 wt% of 1,3-PDO yield was achieved with 93.6 wt% 
of glycerol conversion value, corresponding to 58.5% of the theoretical 1,3-
PDO yield. 

3. THE FUTURE OF SOLAR ENERGY UTILIZATION  

3.1. Potential of Solar Energy Utilization for the Upcoming 

Biorefinery 

Renewable biomass is an important source for alternative energy and 
substitute for traditional fossil resources as it is prevalent on Earth and can be 
readily converted into target products. Intensive research focuses on the 
conversion of biomass into chemicals, biofuels, and various materials and the 
race is on for creating new “biorefinery” processes needed for future 
economies. The application of process intensification techniques, such as 
ultrasound irradiation, in biorefineries has been proved to increase energy 
efficiency, shorten the reaction time, and improve product yields [95]. The 
development of biorefineries that utilize free, renewable, and abundant solar 
thermal energy will create remarkable opportunities for the forestry, 
biotechnology, materials, and chemical processing industries as well as 
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stimulating advances in agriculture. It will eventually help to create a 
sustainable society and industries that use renewable and carbon-neutral 
resources.  

3.2. “Two-Stage Upscaling Method” for Bioethanol Production 

Using Solar Reactor 

For future studies on solar energy utilization, we propose a two-stage 

upscaling procedure. In the first stage, upscaling of the current solar reactor to 
a size four times larger than the current apparatus (50 cm height and 110 cm 
base) is planned. We expect the new dimensions to enable an increase in the 
flow rate of the feedstock by a factor of four. In the second stage of upscaling, 
in addition to the dimensions (approximately ten times larger than the current 
reactor, 120 cm height and 200 cm base), the design of the solar reactor will be 
modified as well (see Figure 15, staircase design) to handle large quantities of 
biomass feed for demand-based supply of bioethanol for transportation and 
chemical industry applications. 

 

 

Figure 15. Staircase design of larger solar reactor for upscaling the bioethanol 
production process. 
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3.3. Exploitation of Solar-Energy Based Bioethanol for the 

Production of Valuable Chemicals 

The bioethanol produced from solar-energy based fermentation can be used as 
feedstock for the production of valuable chemicals such as diethyl ether and 
ethylene. Dietheyl ether is an attractive motor vehicle fuel alternate and 
ethylene is one of the major feedstock for a variety of polymer-based materials 
in petrochemical industry [96-97]. Production of petrochemicals from 
environment-friendly non-petroleum feedstock is very important and 
developments of new and efficient production processes are considered as 
challenging research areas [96, 98-99]. Polyoxometallates such as 
tungstophosphoric acid, silicotungstic acid, and molybdophosphoric acid are 
potential catalysts which can be used for the dehydration of bioethanol under 
microwave irradiation conditions [96, 100-101]. Therefore, any progress in 
this direction will open new avenues towards sustainable biorefinery. 

CONCLUSION 

Currently, the only available pathway for conversion of carbohydrates into 
ethanol is the biological pathway, i.e., fermentation, which is the most time-
consuming part of the bioethanol production process. There are many reports in 
the literature focusing on the evaluation of different carbohydrates and 
fermentation conditions for accelerated bioethanol production. The current 
bioethanol production methods are mostly based on highly-controlled reactions 
and state-of-the-art instruments such as the sonicator, high-speed stirrer, and 
microwave, requiring a large amount of electrical energy input. In our study, 
solar energy was used as a heating element for the catalyst and the reaction 
volume, replacing an oven or a heating plate. In the same way, the distillation 
step was also aided by this heating element as the ethanol produced in the 
reactor was separated from the broth soon after its formation by an evaporation-
condensation process.  

High ethanol yields were obtained (84-91% of the theoretical yield) by 
performing various solar-energy-driven fermentation reactions indicating the 
atom efficiency of the process. The ethanol produced from this process was 
demonstrated as a potential fuel for DEFCs with current and power density 
values as high as 700 mA/cm2 and 330 mW/cm2. This economically-feasible 
and environment-friendly process was also demonstrated for the production of 
a value-added chemical 1,3-PDO. Future studies should focus on combining 
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the existing fermentation methods and techniques with the proposed 
innovative solar-energy-driven method for green, cost-effective, and 
industrially-appealing biomass conversion into chemicals and biofuels.  
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Abstract

In this chapter, the modelling techniques of PV panels from I-V char-

acteristics are discussed. At the beginning, a necessary review on the var-

ious methods are presented, where difficulties in mathematics, drawbacks

in accuracy, and challenges in implementation are highlighted. Next, a

novel approach based on linear system identification is demonstrated in

detail. Other than the prevailing methods of using approximation (ana-

lytical methods), iterative searching (classical optimization), or soft com-

puting (artificial intelligence), the proposed method regards the PV diode

model as the equivalent output of a dynamic system, so the diode model

parameters can be linked to the transfer function coefficients of the same

dynamic system. In this way, the problem of solving PV model parame-

ters is equivalently converted to system identification in control theory,

which can be perfectly solved by a simple integral-based linear least

square method. Graphical meanings of the proposed method are illus-

trated to help readers understand the underlying principles. As compared

∗E-mail address: LiHonIdris.Lim@glasgow.ac.uk
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to other methods, the proposed one has the following benefits: 1) unique

solution; 2) no iterative or global searching; 3) easy to implement (lin-

ear least square); 4) accuracy; 5) extendable to multi-diode models. The

effectiveness of the proposed method has been verified by indoor and out-

door PV module testing results. In addition, possible applications of the

proposed method are discussed like online PV monitoring and diagnos-

tics, non-contact measurement of POA irradiance and cell temperature,

fast model identification for satellite PV panels, and etc.

1. Introduction

PV panels are made of PV cells assembled in series/parallel and encapsulated in

modules. The cell structure can be simplified as a p-n junction exposed to light,

as depicted in Figure 1, which is a combination of two layers of differently

doped semiconductor materials.

1.1. PV Modeling

Without the sunlight, the characteristics of the p-n junction is governed by the

well-known Shockley diode equation [1]

ID = Io

(

e
V
a − 1

)

, (1)

where ID is the diode current, Io is the reverse saturation current, a = nkTc/q

is the modified ideality factor [2], n is the ideality factor, k is Boltzmann’s

constant (1.380653×10−23 J/K), Tc is the cell temperature, and q is the electron

charge (1.60217646×10−19 C). With the presence of sunlight, the p-n junction

absorbs the photon and generates electron-hole pairs (or carriers) moving across

the junction, which is known as the photovoltaic effect. The inclusion of the

resulted photocurrent into Shockley equation (1) forms an ideal model of PV

cells as

I = IL − ID = IL − Io

(

e
V
a − 1

)

, (2)

where photocurrent IL is dependent on the flux of incident irradiation as well

as the absorption capacity of the semiconductor materials [3]. However, the

ideal model by (2) usually yields unacceptable errors in reality due to the lack

of consideration on the current losses from the contact resistance between the

silicon and electrodes surfaces, the current flow resistance in the silicon material
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Figure 1. Equivalent circuit of diode models.

Figure 2. Equivalent circuit of diode models.

and the resistance of the electrodes. By incorporating the effects from all these

resistances, a more realistic and accurate model [4] is derived as

I = IL −
m∑

i=1

IDi
− Ish = IL −

m∑

i=1

Ioi

(

e
V +RsI

ai − 1

)

−
V + RsI

Rsh
, (3)

where Rs and Rsh are resistances in series and parallel,respectively. The equiv-

alent circuit for (3) is shown in Figure 2, where diode D1 accounts for carriers

diffusing across the p-n junction and recombining in the bulk or at surfaces,

diode D2 is sometimes attributed to carrier recombination by traps within the

depletion region [5], or recombination at an unpassivated cell edge [6]. Theo-

retically, more diodes (m > 2) can be added to the circuit in Figure 2 to better

account for distributed and localized effects in solar cells like Auger recombi-

nation, but their contributions are negligible as compared to D1 and D2 [7].

Note that (3) is applicable not only to PV cells, but also to PV modules.
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For the latter, ai = NsnikTc/q, where Ns is the number of cells connected in

series. In the lumped-circuit model by (3) or Figure 2, only I and V are known

variables from the data sheet or real measurements. The model identification

is then to determine the unknown parameters IL, Ioi
, ai, Rs and Rsh from the

known data of I and V .

1.2. PV Model Identification

Even in the case of the one diode model (m = 1 in (3)), it is not straightforward

to determine the model parameters (IL, Io, a, Rs and Rsh) from the I-V char-

acteristics of PV cells/modules due to the transcendental nature of (3). For such

a one-diode PV model, the existing identification methods in literature can be

divided into the following two categories.

1.2.1. Deterministic Solution

The deterministic solution is an unique solution of the five unknown parameters

(IL, Io, a, Rs and Rsh) from five independent equations. Usually, the four inde-

pendent equations are chosen from the open circuit, short circuit and maximum

power points at STC (1000 W/m2, Tc = 25◦C, AM = 1.5) as follows.

At short circuit (SC), V = 0:

Isc = IL − Io

(

e
RsIsc

a − 1
)

−
RsIsc

Rsh
. (4)

At open circuit (OC), I = 0:

IL − Io

(

e
Voc
a − 1

)

−
Voc

Rsh
= 0. (5)

At maximum power point (MPP), dP/dV = 0:

Impp = IL − Io

(

e
Vmpp+RsImpp

a − 1

)

−
Vmpp + RsImpp

Rsh
. (6)

dIV

dV

∣
∣
∣
∣
mpp

= −
Vmpp

Rs + 1

Io
a

e
Vmpp+ImppRs

a + 1
Rsh

+ Impp = 0. (7)

As for the 5th independent equation, there are many options.

Complimentary Contributor Copy



PV Panel Modeling and Identification 71

One way is to estimate one of the five parameters independently. For ex-

ample, IL can be estimated from the influence of the structure parameters of

a silicon solar cell on photocurrent [8]. Io is material independent and can be

explicitly related to a solid state parameter, the 0K Debye temperature of the

semiconductor [9]. a can be determined from the use of properties of special

trans function theory (STFT) [10]. The estimation of Rs are well summarized

in [11–15]. Rsh can be approximated by the reciprocal of slope at SC [16], i.e.,

Rsh ≈ −
dV

dI

∣
∣
∣
∣
sc

. (8)

For example, with equation (4)-(8), one-diode model parameters can be identi-

fied as [17]

IL = Isc

(

1 +
Rs

Rsh

)

+ Io

(

e
IscRs

a − 1
)

,

Io =

(

Isc −
Voc

Rsh

)

e−
Voc

a ,

a =
Vmpp + ImppRs0 − Voc

ln
(

Isc −
Vmpp

Rsh
− Impp

)

− ln
(

Isc −
Voc

Rsh

)

+
Impp

Isc−
Voc
Rsh

,

Rs = Rs0 −
a

I0
e−

Voc
a ,

where Rs0 = − dV/dI |oc is the reciprocal of slope at OC.

The other way is to apply one of (4)-(7) to non-STC conditions. For exam-

ple, applying (5) to T ∗
c = Tc + ∆T (∆T 6= 0) gives

I∗L − I∗o

(

e
V ∗

oc
a∗ − 1

)

−
V ∗

oc

R∗
sh

= 0. (9)

In the case of no irradiance change, non-STC parameters are given by [2,18]

I∗L = IL + αT∆T, (10)

I∗o = Io

(
T ∗

c

Tc

)3

e
Eg

kTc
−

E∗

g

kT∗ , (11)
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E∗
g = Eg(1 − 0.0002677∆T ), (12)

a∗ =
T ∗

c

Tc
a, (13)

R∗
sh = Rsh, (14)

V ∗
oc = Voc + βT∆T, (15)

where Eg = 1.17− 4.73× 10−4T 2
c /(Tc + 636) is the band gap energy, αT and

βT are the temperature coefficient of SC current and OC voltage, respectively.
Substituting (10)-(15) into (9) yields the 5th independent equation as follows

IL + αT ∆T − Io

(
T ∗

c

Tc

)3

e
Eg

kTc
−

Eg (1−0.0002677∆T )

kT∗

(

e
Voc+βT ∆T

a
Tc
T∗

c − 1

)

−
Voc + βT ∆T

Rsh

= 0.

Different choices of non-STC equations yield different solutions for (IL, Io, a,

Rs and Rsh), which can be found in [19–23].

No matter what the 5th equation is, a small variation in one parameter may

lead to a large error in the other four parameters, due to the high sensitivity of

the transcendental equation [24]. Even if there is no approximation in the 5th

equation, there are no analytical solutions available due to the inherent nonlin-

earity. Usually, partial linearization has to be made to yield empirical formu-

las [25–29], which is a trade-off between simplicity and accuracy. Note that the

greatest difficulty in solving (3) lies in its implicit format of I , i.e., I are both

dependent and independent variable of the equation. Recent progress to over-

come such difficulty is to apply the Lambert W function [30,31] to (3), then the

implicit format of I is converted to its equivalent explicit format as [18,32]

I =
Rsh(IL + Io) − V

Rs + Rsh
−

a

Rs
W

(
IoRsRsh

a(Rs + Rsh)
e

Rsh(V +Rs(IL+Io))

a(Rs+Rsh)

)

. (16)

The benefit of (16) over (3) is that the former is not transcendental anymore,

which makes it possible to find solutions to (4)-(7) by iterative algorithms.

1.2.2. Optimal Solution

Optimal solution employs nonlinear fitting procedures based on the minimiza-

tion of deviations between modelled and measured I-V curves, in accordance

with some metric function (usually least square) [33–36], e.g.,

min f(IL, Io, a, Rs, Rsh) =
N∑

i=1

[

Ii − Îi(Vi, IL, Io, a, Rs, Rsh)
]2

,
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where N is the number of data samples, Î is the estimation of I with the optimal

solution of IL, Io, a, Rs and Rsh. Iterative searching algorithms are usually used

[37, 38], including Newton-Raphson [39], Levenberg-Marquardt [40], Gauss

Siedal [16], and singular value decomposition [41], but their convergence and

accuracy heavily depend on the initial values and are easily trapped in the local

optimums. From different initial value guesses, such approaches can result in

widely different parameter sets, all leading to satisfactory curve fitting [42].

Although a good match between estimation and measured data can be obtained,

there is no guarantee that the estimated I-V curve would pass the SC, OC and

MPP points.

To achieve the global optimum, soft computing techniques have to be used,

which include genetic algorithm (GA) [43–46], particle swarm optimisation

(PSO) [47–49], differential evolution (DE) [50–52], simulated annealing (SA)

[53, 54] and artificial neural network (ANN) [55, 56]. But they are too compli-

cated to be implemented and unsuitable for online calculation due to the heavy

burden of computing.

Current trend of PV model identification is to combine the deterministic

and optimal solutions, i.e.,employing both methods of solving algebraic equa-

tions and iterative searching [57–59]. With a single parameter fitting procedure,

numerical solutions to (4)-(7) will be obtained by the empirical formulas or it-

erative algorithms. The drawbacks of the above two categories are mitigated

in this way. With the help of Lambert W function as shown in (16), Laudani

et al. further reduce the dimension of searching space from 5 to 2 by splitting

the model parameters into two independent unknowns (a and Rs) and three de-

pendent ones (IL, Io and Rsh). In this way, the burden of iterative searching

is greatly relieved and it becomes easy to get a and Rs numerically or graphi-

cally. The review and comparison for the aforementioned all kinds of methods

are well summarised in [60,61].

This chapter opens a new angle to view the diode model from the systems

perspective. Actually, one of the biggest application of Lambert W function

is to solve differential equations, which is directly linked to the time-domain

representation of a linear system. For example, the first-order linear system can

be described as [62]

T
dy(t)

dt
+ y(t) = u(t), (17)

where T is the time constant of the system. The unit ramp (u(t) = t) response
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of (17) is given by,

y(t) = t + T (e−
t
T − 1),

which has the same format as (3). This motivates us that the I-V curve gov-

erned by (3) can be viewed as the output of some linear system, and the model

parameters can be linked to the coefficients of a linear differential equation.

Using system identification methods available in the literature [63], PV model

parameters can be easily identified by a simple linear least squares method.

2. Dynamic System Formulation

Firstly, we show how to link one-diode model to an equivalent linear system.

Next, the same method is extended to the general case of multi-diode model.

2.1. One-Diode Model

Recall the I-V curve described by (3) with m = 1. Let y = I and x = V +RsI ,

(3) then becomes

y = IL + Io − Ioe
x
a −

x

Rsh
. (18)

Taking differential once on both sides of (18) gives

dy

dx
= −

Io

a
e

x
a −

1

Rsh
. (19)

Differentiating one more time for (19) gives

d2y

dx2
= −

Io

a2
e

x
a . (20)

Eliminating ex/a from (19) and (20) gives

a
d2y

dx2
−

dy

dx
=

1

Rsh
. (21)

Let t = x and u(t) ≡ 1, (21) is equivalent to

a
d2y(t)

dt2
−

dy(t)

dt
=

u(t)

Rsh
, (22)

Complimentary Contributor Copy



PV Panel Modeling and Identification 75

which is a standard differential equation representation of a second order linear

system. t is the “time”, u(t) and y(t) are the system “input” and “output”,

respectively. Since u(t) ≡ 1, y(t) is the unit step response of the system in

“time” domain. Taking Laplace transform, F (s) = L[f(t)] =
∫∞
0 e−stf(t)dt,

on both sides of (22),

a[s2Y (s) − sy(0) − y′(0)]− [sY (s) − y(0)] =
U(s)

Rsh
. (23)

Utilize sU(s) = 1, and (23) is equivalent to

a
[

s2Y (s) − s2U(s)y(0)− sU(s)y′(0)
]

− [sY (s)− sU(s)y(0)] =
1

Rsh
U(s).

It follows from (18) that y(0) = IL, y′(0) = −Io/a − 1/Rsh, so the transfer

function from Y (s) to U(s) is

G(s) :=
Y (s)

U(s)
=

ay(0)s2 + [ay′(0)− y(0)]s + 1
Rsh

as2 − s

=
aILs2 − (Io + a

Rsh
+ IL)s + 1

Rsh

as2 − s
. (24)

The corresponding time domain differential equation is

a
d2y(t)

dt2
−

dy(t)

dt
= aIL

d2u(t)

dt2
−

(

IL + Io +
a

Rsh

)
du(t)

dt
+

u(t)

Rsh
. (25)

It should be noted that (22) is different from (25) because of the non-zero

initial conditions. In other words, (25) is the description of the same system of

(22) but with zero initial conditions. This will facilitate the calculation of the

integral-based identification proposed in Section 3

2.2. Multi-Diode Model

Similarly by letting y = I and x = V + RsI in (3), it yields

y = IL +
m∑

i=1

Ioi
−

m∑

i=1

Ioi
e

x
ai −

x

Rsh
. (26)

Taking differential once on both sides of (26) gives

dy

dx
= −

m∑

i=1

Ioi

ai
e

x
ai −

1

Rsh
. (27)
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Differentiating (27) for k times, k = 1, 2, · · · , m, yields

y(k+1)(x) = −
m∑

i=1

Ioi

ak+1
i

e
x
ai , (28)

where y(k)(x) = dky/dxk. Rewrite (28) in matrix format,









y(2)(x)

y(3)(x)
...

y(m+1)(x)









︸ ︷︷ ︸

B

=









a−1
1 a−1

2 · · · a−1
m

a−2
1 a−2

2 · · · a−2
m

...
...

. . .
...

a−m
1 a−m

2 · · · a−m
m









︸ ︷︷ ︸

A










−
Io1
a1

e
x
a1

−
Io2
a2

e
x
a2

...

− Iom

am
e

x
am










.

Since ak 6= 0, A is a Vandermonde matrix with det(A) 6= 0, so A−1 exists and

[

−
Io1

a1
e

x
a1 ,−

Io2

a2
e

x
a2 , . . .−

Iom

am
e

x
am

]T

= A−1B, (29)

where A−1 = [ξi,j] ∈ Rm×m with

ξi,j =

∑

1≤k1<···<kn−j≤n
k1,··· ,kn−j 6=i

(−1)j−1a−1
k1

· · ·a−1
kn−j

a−1
i

∏

1≤k≤n
k 6=i

(

a−1
k − a−1

i

) . (30)

Substituting (29) into (27) yields

y(1)(x)−
m∑

j=1

m∑

i=1

ξi,jy
(j+1)(x) = −

1

Rsh
. (31)

Let t = x and u(t) ≡ 1, (31) becomes the differential equation representation

of an mth-order “dynamic” system:

y(1)(t) −
m∑

j=1

m∑

i=1

ξi,jy
(j+1)(t) = −

u(t)

Rsh
. (32)

Taking Laplace transform for both sides of (32) yields

sY (s) − y(0) −

m∑

j=1

m∑

i=1

ξi,j

(

sj+1Y (s) −

j+1
∑

k=1

sk−1y(j+1−k)(0)

)

= −
U(s)

Rsh

. (33)
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It follows from (26)-(28) that y(0) = IL, y(1)(0) = −
∑m

i=1 Ioi
/ai − 1/Rsh,

y(k+1)(0) = −
∑m

i=1 Ioi
/ak+1

i for k = 1, 2, · · · , m. Since sU(s) = 1, (33)

becomes

sY (s) − ILsU(s) −
m∑

j=1

m∑

i=1

ξi,j



 sj+1Y (s)− U(s)×





j
∑

k=1

sk
m∑

i=1

−Ioi

a
j+1−k
i

−
sj

Rsh
+ ILsj+1







 = −
U(s)

Rsh
.

The transfer function is G(s) = Y (s)/U(s) = N/D, where

D =
m∑

j=1

m∑

i=1

ξi,js
j+1 − s,

N =
1

Rsh
− ILs +

m∑

j=1

m∑

i=1

ξi,j



ILsj+1 −
sj

Rsh
−

j
∑

k=1

sk
m∑

i=1

Ioi

aj+1−k
i



 .

The corresponding time domain differential equation with zero initial condition

is

αm+1y
(m+1)(t) + · · ·+ α2y

(2)(t) − y(1)(t)

=βm+1u
(m+1)(t) + · · ·+ β1u

(1)(t) +
u(t)

Rsh
, (34)

where for j = 1, 2, · · · , m,

α1 = −1, (35)

αj+1 =
m∑

i=1

ξi,j, (36)

βj = αjIL −
αj+1

Rsh
−

m∑

k=j

m∑

i=1

αk+1Ioi

ak+1−j
i

, (37)

βm+1 = αm+1IL. (38)

In general, by introducing a virtual “time” of t = x, the static relationship

between two variables y and x can be regarded as dynamics from the linear

system governed by (34). Once αi and βi are determined from system identifi-

cation, diode model parameters IL, Ioi
, ai and Rsh can be solved linearly from

(36)-(37).
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3. Integral-Based Linear Identification

For an integer n ≥ 1, define the multiple integral as [63]

∫ (n)

[T1,T2]
f(τ) =

∫ T2

T1

∫ τn

T1

· · ·

∫ τ2

T1
︸ ︷︷ ︸

n

f(τ1)dτ1dτ2 · · ·dτn. (39)

3.1. One-Diode Model

Applying (39) to (25) for T1 = 0, T2 = t and n = 2 gives

ay(t)−aILu(t)+

(

IL + Io +
a

Rsh

)∫ (1)

[0,t]
u(τ)−

1

Rsh

∫ (2)

[0,t]
u(τ) =

∫ (1)

[0,t]
y(τ).

(40)

Let θ = [a, aIL, IL + Io + a
Rsh

, 1
Rsh

]T , φ(t) =

[y(t),−u(t),
∫ (1)
[0,t] u(τ),−

∫ (2)
[0,t] u(τ)]T and γ(t) =

∫ (1)
[0,t] y(τ), (40) can be

rewritten as the matrix format of φT (t)θ = γ(t). Note that the matrix format

holds for any ti ∈ [0, t], i = 1, 2, · · · , N , where N is the the number of data

samples on the I-V curve. This actually casts an equation group of Φθ = Γ

with Φ = [φ(t1), φ(t2), · · · , φ(tN)]T and Γ = [γ(t1), γ(t2), · · · , γ(tN)]T . If

ΦTΦ is nonsingular, the linear least square solution for θ is given by

θ =
(

ΦTΦ
)−1

ΦTΓ, (41)

which will minimise the square error of (Γ − Φθ)T (Γ − Φθ). Once θ is deter-

mined from (41), the parameters of one-diode model can be obtained by

a = θ1,

IL =
θ2

θ1
,

Io = θ3 −
θ2

θ1
− θ1θ4,

Rsh =
1

θ4
.
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3.2. Multi-Diode Model

Applying (39) to (34) for T1 = 0, T2 = t and n = m + 1,

αm+1y(t) + · · ·+ α2

∫ (m−1)

[0,t]
y(τ) −

∫ (m)

[0,t]
y(τ)

=βm+1u(t) + · · ·+ β1

∫ (m)

[0,t]
u(τ) +

1

Rsh

∫ (m+1)

[0,t]
u(τ).

Let θ = [αm+1, · · · , α2, βm+1, · · · , β1,
1

Rsh
]T ,

φ(t)=[y(t), · · · ,
∫ (m−1)
[o,t] y(τ),−u(t), · · · ,

−
∫ (m+1)
[0,t] u(τ)]T , γ(t) =

∫ (m)
[0,t] y(τ), θ and φ(t) ∈ R(2m+2)×1, we have

φT (t)θ = γ(t). For ti ∈ [0, t], i = 1, 2, · · · , N , the equation group

can be described by Φθ = Γ with Φ = [φ(t1), φ(t2), · · · , φ(tN)]T and

Γ = [γ(t1), γ(t2), · · · , γ(tN)]T . If ΦTΦ is nonsingular, the least square

solution for θ will be

θ =
(

ΦTΦ
)−1

ΦTΓ. (42)

Once θ is determined from (42), Rsh = 1/θ2m+2 is immediately derived. It

follows from (38) that IL = βm+1/αm+1 = θm+1/θ1.

ai (i = 1, 2, · · · , m) will be derived in the following way. Rewriting (36) in

matrix format gives

[α2, · · · , αm+1] = [1, · · · , 1]
︸ ︷︷ ︸

m

A−1.

Right-multiplying A for both sides gives

[α2, · · · , αm+1]







a−1
1 · · · a−1

m
...

. . .
...

a−m
1 · · · a−m

m







= [1, · · · , 1]
︸ ︷︷ ︸

m

,

which implies that 1/ai are the roots of the following characteristic equation

αm+1λ
m + αmλm−1 + · · ·+ α2λ − 1 = 0. (43)

Solving (43) for λi, and ai = 1/λi, Ioi
(i = 1, 2, · · · , m) will be derived as

follows. (37) can be rewritten as

βj = αjIL −
αj+1

Rsh
−

m∑

i=1

Ioi

m∑

k=j

αk+1

ak+1−j
i

.
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Rewriting further as matrix format,













m∑

k=1

αk+1

ak
1

m∑

k=1

αk+1

ak
2

· · ·

m∑

k=1

αk+1

ak
m

m∑

k=2

αk+1

a
k−1
1

m∑

k=2

αk+1

a
k−1
2

· · ·

m∑

k=2

αk+1

a
k−1
m

.

.

.

.

.

.

.
.
.

.

.

.
m∑

k=m

αk+1

a
k+1−m
1

m∑

k=m

αk+1

a
k+1−m
2

· · ·

m∑

k=m

αk+1

a
k+1−m
m













︸ ︷︷ ︸

Ψ





Io1
Io2

.

.

.

Iom



 = −







β1 + IL +
α2

Rsh

β2 − α2IL +
α3

Rsh

.

.

.

βm − αmIL +
αm+1

Rsh







︸ ︷︷ ︸

Ξ

Note from (43) that
∑m

k=1 αk+1/ak
i = 1 for i = 1, 2, · · · , m, Ψ can be simpli-

fied as

Ψ =







1 1 · · · 1
a1 a2 · · · am

.

.

.
.
.
.

. . .
.
.
.

am−1
1 am−1

2 · · · am−1
m







︸ ︷︷ ︸

Ψ∗

−









0 · · · 0
α2 · · · α2

.

.

.
. . .

.

.

.
m−1∑

k=1

αk+1am−1−k
1 · · ·

m−1∑

k=1

αk+1am−1−k
m









.

This implies that after elementary row operations, Ψ is similar to Ψ∗, which

is a Vandermonde matrix with det(Ψ∗) 6= 0. Therefore, Ψ−1 exists (Ψ is full

rank) and [Io1, Io2, · · · , Iom]T = Ψ−1Ξ.

3.3. Nonsingularity of Φ
T
Φ

The existence of the linear least square solution by (41) and (42) depends on the

nonsingularity of ΦT Φ, which is shown by the following lemma.

Lemma 3.1. ΦTΦ is nonsingular if ai 6= aj for i 6= j, i, j = 1, 2, · · · , m, and

the sampling number N ≥ 2m + 2.

Proof. Consider the general case of multi-diode model with

Φ = [φ(t1), φ(t2), · · · , φ(tN)]T := [Φ1, Φ2],
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Φ1 =











y(t1)
∫ (1)
[0,t1]

y(τ) · · ·
∫ (m−1)
[0,t1]

y(τ)

y(t2)
∫ (1)
[0,t2]

y(τ) · · ·
∫ (m−1)
[0,t2]

y(τ)
...

...
. . .

...

y(tN )
∫ (1)
[0,tN] y(τ) · · ·

∫ (m−1)
[0,tN ] y(τ)











:= [φi,j],

Φ2 = −











u(t1)
∫ (1)
[0,t1]

u(τ) · · ·
∫ (m+1)
[0,t1]

u(τ)

u(t2)
∫ (1)
[0,t2]

u(τ) · · ·
∫ (m+1)
[0,t2]

u(τ)
...

...
. . .

...

u(tN )
∫ (1)
[0,tN] u(τ) · · ·

∫ (m+1)
[0,tN ] u(τ)











=: [ϕi,l].

Recall from (26) that

y(t) = IL +
m∑

i=1

Ioi
−

m∑

i=1

Ioi
e

t
ai −

t

Rsh
,

and u(t) ≡ 1 by the definition. For i = 1, 2, · · · , N ,

φi,j =

∫ (j−1)

[0,ti]

y(τ ) =

IL +
m∑

i=1

Ioi

(j − 1)!
tj−1
i

−
t
j
i

j!Rsh

+

j−2
∑

k=0

m∑

l=1

Iol
aj−k−1

l

tki
k!

−

j
∑

k=1

Iok
aj−1

k
e

ti
ak ,

ϕi,l = −

∫ (l−1)

[0,ti ]

u(τ ) = −
1

j!
tli,

where j = 1, 2, · · · , m and l = 1, 2, · · · , m + 2. After elementary column

operations for Φ, Φ1 → Φ̃1 := [φ̃i,j] with

φ̃i,j =
j
∑

k=1

Iok
a

j−1
k e

ti
ak .

In matrix format,

Φ̃1 =









e
t1
a1 e

t1
a2 · · · e

t1
am

e
t2
a1 e

t2
a2 · · · e

t2
am

.

.

.
.
.
.

. . .
.
.
.

e
tN
a1 e

tN
a2 · · · e

tN
am









︸ ︷︷ ︸

E







Io1

Io2

. . .

Iom







︸ ︷︷ ︸

Λ







1 a1 · · · am−1
1

1 a2 · · · am−1
2

.

..
.
..

. . .
.
..

1 am · · · am−1
m







︸ ︷︷ ︸

V ∗

.
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Since Λ is diagonal and V ∗ is a standard Vandermonde matrix, rank(Λ) =
rank(V ∗) = m. If t2 − t1 = t3 − t2 = · · · = tm − tm−1 = Ts > 0, as
N ≥ 2m + 2, the first m row of E

Em =









1 1 · · · 1

e
Ts
a1 e

Ts
a2 · · · e

Ts
am

...
...

. . .
...

(e
Ts
a1 )n−1 (e

Ts
a2 )n−1 · · · (e

Ts
am )m−1

















e
t1
a1

e
t1
a2

. . .

e
t1

am









,

so rank(E) = rank(Em) = m. Otherwise, it is always possible to find some

∆T such that ti = ni∆T , ni ∈ N for i = 1, 2, · · · , m. Construct matrix

E∗ =










1 1 · · · 1

e
∆T
a1 e

∆T
a2 · · · e

∆T
am

...
...

. . .
...

e
nm∆T

a1 e
nm∆T

a2 · · · e
nm∆T

am










∈ Rnm×n,

and Em is sub-matrix of E∗. Since E∗ is a Vandermonde matrix with full
column rank, rank(E) = rank(Em) = rank(E∗) = m. So, Φ1 is full column
rank, i.e., rank(Φ1) = m.

Φ2 =








t1 t21 · · · tm+2
1

t2 t22 · · · tm+2
2

...
...

. . .
...

tN t2N · · · tm+2
N








︸ ︷︷ ︸

V2











−1
. . .

−1

(m + 1)!
−1

(m + 2)!











As N ≥ 2m + 2, the first m + 2 row of V2 is a Vandermonde matrix, so

rank(Φ2) = rank(V2) = m + 2, i.e., Φ2 is full column rank. Since Φ =
[Φ1, Φ2] with the full column rank of both Φ1 and Φ2, Φ is also full column

rank. N ≥ 2m + 2 implies that the row number of Φ is no less than the column

number. So, rank(Φ) = 2m+2 and ΦTΦ is full rank, i.e., (ΦTΦ)−1 exists.

3.4. Calculation of Multiple Integrals

In practice, the integral shown as (39) is numerically estimated by rectangu-

lar or trapezoidal integration. For example, suppose there are N samples at
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t1, t2, · · · , tN , the rectangular integration gives

∫ (1)

[t1,ti]
f(τ) =

∫ ti

t1

f(τ1)dτ1 ≈
i−1∑

k=1

f(k)(tk+1 − tk) := f1(i),

∫ (2)

[t1,ti]
f(τ) ≈

i−1∑

k=1

f1(k)(tk+1 − tk) := f2(i),

...

∫ (n)

[t1,ti]
f(τ) ≈

i−1∑

k=1

fn−1(k)(tk+1 − tk) := fn(i).

for i = 1, 2, · · · , N . The more number of samples, fi, the more accurate the

estimation to the multiple integrals will be.

3.5. Determination of Rs

To calculate θ from (41) or (42), Φ and Γ must be known. As both of them

are integrals to t, t must be known as well. Since t = V + RsI , Rs must be

determined before applying integrals. It is clear to see that if Rs is bigger than

its real value, t will increase so that the whole I-V curve will move to the right

and the error between the real and estimated I-V curves will be positive; If Rs

decreases, the whole I-V curve will move to the left and the error between the

real and estimated I-V curves will be negative. Thus, Rs can be used as a tuning

parameter such that the root mean square error (RMSE) is minimised.

It derives from (3) that

−
1

dI
dV

∣
∣
∣
oc

= Rs +
1

m∑

i=1

Ioi

ai
e

Voc
ai + 1

Rsh

> Rs,

which implies the upper bound of Rs, i.e., Rupp
s = −1/ dI

dV

∣
∣
∣
oc

. The lower bound

of Rs can be zero at first, i.e., Rlow
s = 0. With such a band of Rs ∈ [Rlow

s , Rupp
s ],

binary search algorithm is applied to determine Rs in the following way:

Step 1. Arbitrarily choose Rs from [Rlow
s , Rupp

s ] and calculate âi, ÎL, Îoi

and R̂sh from the proposed linear least square (41) or (42);

Step 2. Calculate from (3) that

ŷ(t) = ÎL −
m∑

i=1

Îoi

(

e
V +RsI

âi − 1

)

−
V + RsI

R̂sh

,
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and RMSE =
√
∑N

i=1 [ŷ(ti) − y(ti)]
2 /N .

Step 3. Calculate ERR =
∑N

i=1[ŷ(ti) − y(ti)]. If ERR > 0, adjust

Rs = (Rs + Rlow
s )/2. Otherwise, adjust Rs = (Rs + Rupp

s )/2.

Step 4. Update Rupp
s and Rlow

s according to the sign of ERR. If ERR > 0,

Rupp
s = Rs, otherwise, Rlow

s = Rs.

Step 5. If RMSE is less than some tolerance or the iterative cycle reaches

some preset number, stop the searching. Otherwise, update Rupp
s and Rlow

s

according to the sign of ERR and go back to Step 2. The flowchart of the

binary searching algorithm is shown in Figure 3.

3.6. Robustness Enhancement

From the viewpoint of control theory, the transfer function (24) has a pole of

s = 1/a > 0, which implies the system (25) is unstable. This is also true for

the general case of multi-diode model. Identification for unstable system is not

preferred because the convergence of the proposed algorithm might be sensi-

tive to the accuracy of the integral calculation in such a case. To improve the

robustness of the proposed algorithm, Ṽ is introduced to yield a stable system.

In case of one-diode model, let V = Voc − Ṽ , 0 ≤ Ṽ ≤ Voc, and x̃ =
Ṽ − RsI , thus x = V + RsI = Voc − (Ṽ − RsI) = Voc − x̃. It follows from

(18)-(20) that

y = IL + Io −
Voc

Rsh
− Ioe

Voc
a e−

x̃
a +

x̃

Rsh
,

dy

dx̃
=

Io

a
e

Voc
a e−

x̃
a +

1

Rsh
,

d2y

dx̃2
= −

Io

a2
e

Voc
a e−

x̃
a .

Let t = x̃ and u(t) ≡ 1, by eliminating e−x̃/a it gives

a
d2y(t)

dt2
+

dy(t)

dt
=

u(t)

Rsh
.

The corresponding transfer function is

G(s) =
Y (s)

U(s)
=

ay(0)s2 + [ay′(0) + y(0)]s + 1
Rsh

as2 + s
,
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Figure 3. Flowchart of the binary searching algorithm.

where y(0) = IL − Io(e
Voc/a − 1)− Voc/Rsh, y′(0) = Ioe

Voc/a/a + 1/Rsh. In

this way, the unstable pole s = 1/a > 0 becomes stable as s = −1/a < 0.

The remaining procedures are the same as aforementioned. Let γ(t) =
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−
∫ (1)
[0,t] y(τ), φ(t) =

[

y(t),−u(t),−
∫ (1)
[0,t] u(τ),−

∫ (2)
[0,t] u(τ)

]T
, and

θ =









a

aIL − aIo(e
Voc
a − 1) − aVoc

Rsh

IL + Io −
Voc−a
Rsh

1
Rsh









,

the linear least square solution is θ =
(

ΦTΦ
)−1

ΦT Γ with Φ =

[φ(t1), φ(t2), · · · , φ(tN)]T and Γ = [γ(t1), γ(t2), · · · , γ(tN)]T . Once θ is de-

termined, the parameters of one-diode model are obtained by

a = θ1,

IL =
θ2

θ1
+

(

θ3 −
θ2

θ1
− θ1θ4

)(

1 − e
−Voc

θ1

)

+ Vocθ4,

Io =
θ3 −

θ2
θ1

− θ1θ4

e
Voc
θ1

,

Rsh =
1

θ4
.

In the case of a multi-diode model, with the same transform of x = Voc − x̃,

(26) becomes

y = IL +
m∑

i=1

Ioi
−

m∑

i=1

Ioi
e

Voc
ai e

− x̃
ai −

Voc

Rsh
+

x̃

Rsh
. (44)

Let ãi = −ai, ĨL = IL +
∑m

i=1 Ioi
(1 − eVoc/ai) − Voc/Rsh, Ĩoi

= Ioi
eVoc/ai ,

R̃sh = −Rsh, and (44) is equivalent to

y = ĨL +
m∑

i=1

Ĩoi
−

m∑

i=1

Ĩoi
e

x̃
ãi −

x̃

R̃sh

,

which has the same format as (26). This means that all the derivation afore-

mentioned are applicable to the parameter set {ãi, ĨL, Ĩoi
, R̃sh}. Once they are
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determined, the parameter set {ai, IL, Ioi
, Rsh} is derived immediately by

ai = −ãi,

Rsh = −R̃sh,

Ioi
= Ĩoi

e
−Voc

ai ,

IL = ĨL −
m∑

i=1

Ioi

(

1 − e
Voc
ai

)

+
Voc

Rsh
.

4. Validation

4.1. Indoor Flash Test

The I-V characteristics of full-sized commercial modules were measured in-

door by a pulsed solar simulator (PASAN IIIB) with a constant illumination in-

tensity plateau of about 12ms used. The data acquisition, which requires about

10ms, occurs during the plateau period, whereby the light intensity varies by

less than ±1%. The intensity of the solar simulator is calibrated with a c-Si

reference cell certified by Fraunhofer ISE. The overall uncertainty of module

power measurement is within ±2%.

Consider the I-V characteristic of a crystalline PV module from the indoor

flash test under STC (1000W/m2, 25◦C, AM = 1.5) is shown in Figure 4.

Both one-diode and two-diode models are considered for this case study.

4.1.1. One-Diode Model

Firstly, use the last 10 points at OC to derive a linear fitting: I = kV + p,

where k = −0.9131. Rupp
s ≈ −1/k = 1.0952. Rlow

s = 0. Arbitrarily choose

Rs ∈ [Rlow
s , Rupp

s ], e.g., Rs = 1.0952, and follow the proposed integral-based

linear identification presented in Section 3.1, Rs converges to Rs = 0.655 after

about 30 steps with the proposed binary searching, as shown in Figure 6. Mul-

tiple integrals from (39) are estimated by the numerical integration presented in

Section 3.4. It follows from (41) that θ1 = 1.9891, θ2 = 9.8295, θ3 = 4.9434,

Complimentary Contributor Copy



88 Li Hong Idris Lim, Zhen Ye, Dazhi Yang et al.

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Voltage (V)

C
u

rr
e

n
t 

(A
)

Figure 4. The I-V characteristic of a crystalline PV module.

θ4 = 8.9631× 10−4. Thus,

a = θ1 = 1.9891 (V),

IL =
θ2

θ1
= 4.9416 (A),

Io = θ3 −
θ2

θ1
− θ1θ4 = 4.1785× 10−9 (A),

Rsh =
1

θ4
= 1.1157× 103 (Ω).

The comparison between the I-V curves from the real measurement and the

one-code model is shown in Figure 5, where the average absolute error Ē =
1/N

∑N
i=1 |ERR| = 0.0085. The RMSE is shown in Figure 6, which con-

verges to 1.67% at last after 35 steps with Tol = 2%.

4.1.2. Two-Diode Model

It is clear to see from Figure 5 that one-diode model is good enough to represent

the whole I-V curve accurately. This implies that if two-diode model is applied,
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Figure 5. Accuracy of the proposed method for c-Si module.
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Figure 6. Convergence of Rs and RMSE for c-Si module.
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Io2 → 0, which will cause a singular matrix in the identification of Section 3.2

To avoid such a potential problem, robustness enhancement discussed in Section

3.6 will be applied. With m = 2, (44) becomes

y = IL + Io1

(

1 − e
Voc−x̃

a1

)

+ Io2

(

1 − e
Voc−x̃

a2

)

−
Voc − x̃

Rsh
,

where x̃ = Ṽ − RsI , Ṽ = Voc − V . And its multiple differentials are

dy

dx̃
=

Io1

a1
e

Voc−x̃
a1 +

Io2

a2
e

Voc−x̃
a2 +

1

Rsh
, (45)

d2y

dx̃2
= −

Io1

a2
1

e
Voc−x̃

a1 −
Io2

a2
2

e
Voc−x̃

a2 , (46)

d3y

dx̃3
=

Io1

a3
1

e
Voc−x̃

a1 +
Io2

a3
2

e
Voc−x̃

a2 . (47)

(46) and (47) in matrix format are









d2y

dx̃2

d3y

dx̃3









=









−
Io1

a2
1

−
Io2

a2
2

Io1

a3
1

Io2

a3
2












e

Voc−x̃
a1

e
Voc−x̃

a2



 .

Thus,




e

Voc−x̃
a1

e
Voc−x̃

a2



 =









−
Io1

a2
1

−
Io2

a2
2

Io1

a3
1

Io2

a3
2









−1 







d2y

dx̃2

d3y

dx̃3









=








a3
1

Io1(a2 − a1)

a3
1a2

Io1(a2 − a1)

−
a3

2

Io2(a2 − a1)
−

a1a
3
2

Io2(a2 − a1)
















d2y

dx̃2

d3y

dx̃3









.

Substitute it into (45), it yields

a1a2
d3y(t)

dt3
+ (a1 + a2)

d2y(t)

dt2
+

dy(t)

dt
=

u(t)

Rsh
, (48)
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where t = x̃ and u(t) ≡ 0. After Laplace transform, (48) becomes

a1a2

[
s3Y (s) − y′′(0) − sy′(0) − s2y(0)

]
+ (a1 + a2)

[
s2Y (s) − y′(0) − sy(0)

]

+ [sY (s) − y(0)] =
U(s)

Rsh

, (49)

where

y(0) = IL + Io1

(

1 − e
Voc
a1

)

+ Io2

(

1 − e
Voc
a2

)

−
Voc

Rsh
, (50)

y′(0) =
Io1

a1
e

Voc
a1 +

Io2

a2
e

Voc
a2 +

1

Rsh
, (51)

y′′(0) = −
Io1

a2
1

e
Voc
a1 −

Io2

a2
2

e
Voc
a2 . (52)

Utilize sU(s) = 1, and (49) is equivalent to

a1a2s
3Y (s) + (a1 + a2)s

2Y (s) − a1a2y(0)s3U(s) −
[
a1a2y

′(0) + (a1 + a2)y(0)
]
s2U(s)

−

U(s)

Rsh

−

[
a1a2y

′′(0) + (a1 + a2)y
′(0) + y(0)

]
sU(s) = −sY (s).

Therefore, the differential equation representation with zero initial conditions
are

a1a2
d3y(t)

dt3
+ (a1 + a2)

d2y(t)

dt2
− a1a2y(0)

d3u(t)

dt3
−

[
a1a2y

′(0) + (a1 + a2)y(0)
] d2u(t)

dt2

−

u(t)

Rsh

−

[
a1a2y

′′(0) + (a1 + a2)y
′(0) + y(0)

] du(t)

dt
= −

dy(t)

dt
. (53)

Applying triple integral (39) (with n = 3) to (53), we have

a1a2y(t) + (a1 + a2)

∫ (1)

[0,t]

y(τ ) − a1a2y(0)u(t) −
[
a1a2y′(0) + (a1 + a2)y(0)

]
∫ (1)

[0,t]

u(τ )

−
1

Rsh

∫ (3)

[0,t]

u(τ ) −
[
a1a2y′′(0) + (a1 + a2)y

′(0) + y(0)
]
∫ (2)

[0,t]

u(τ ) = −

∫ (2)

[0,t]

y(τ ). (54)

Let φ(t) = [y(t),
∫ (1)
[0,t] y(τ),−u(t),−

∫ (1)
[0,t] u(τ),−

∫ (2)
[0,t] u(τ),−

∫ (3)
[0,t] u(τ)]T ,

θ :=












θ1

θ2

θ3

θ4

θ5

θ6












=












a1a2

a1 + a2

θ1y(0)
θ1y

′(0) + θ2y(0)

θ1y
′′(0) + θ2y

′(0) + y(0)
1/Rsh












, (55)
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and γ(t) = −
∫ (2)
[0,t] y(τ), then (54) can be rewritten in matrix format of

φ(t)T θ = γ(t). The linear least solution to θ is given by (42). Immediately,

a1,2 = (θ2 ±
√

θ2
2 − 4θ1)/2, Rsh = 1/θ6, and






θ3

θ4

θ5




 =






θ1 0 0
θ2 θ1 0

1 θ2 θ1











y(0)
y′(0)

y′′(0)




 .

Therefore,





y(0)

y′(0)
y′′(0)




 =






θ1 0 0

θ2 θ1 0
1 θ2 θ1






−1 




θ3

θ4

θ5




 .

It follows from (50)-(52) that






y(0) + Voc/Rsh

y′(0)− 1/Rsh

y′′(0)




 =








1 1 − e
Voc
a1 1 − e

Voc
a2

0 e
Voc
a1 /a1 e

Voc
a2 /a2

0 −e
Voc
a1 /a2

1 −e
Voc
a2 /a2

2













IL

Io1

Io2




 .

Thus,






IL

Io1

Io2




 =








1 1 − e
Voc
a1 1 − e

Voc
a2

0 e
Voc
a1 /a1 e

Voc
a2 /a2

0 −e
Voc
a1 /a2

1 −e
Voc
a2 /a2

2








−1





y(0) + Voc/Rsh

y′(0)− 1/Rsh

y′′(0)




 .

In this way, with the same I-V characteristics data as shown in Figure5, we

got θ1 = 0.6849, θ2 = 2.2356, θ3 = 0.0247, θ4 = 3.3348, θ5 = 4.9034 and

θ6 = 0.0010. The two-diode model parameters are identified as

a1 = 1.8691 (V),

a2 = 0.3664 (V),

Io1 = 1.5168× 10−10 (A),

Io2 = 7.9060× 10−54 (A),

IL = 4.9480 (A),

Rsh = 955.1229 (Ω),

Rs = 0.6845 (Ω).
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The average absolute error Ē = 0.0080 and RMSE = 1.35%, both of

which are slightly reduced as compared to the one-diode model result. As ex-

pected, Io2 is indeed extremely close to zero, whereas other parameters are com-

parable to their counter parts in one-diode model result.

It should be highlighted that the diode model parameters derived from the

indoor flash test are not constant. Actually, they are varying with temperature

and solar radiation. Therefore, it is necessary to check the online computability

of the proposed method for PV modules under non-constant environment, which

is demonstrated by the outdoor module testing as follows.

4.2. Outdoor Module Testing

Outdoor module testing (OMT) is usually carried out by many PV panel manu-

facturers and solar research institutes for the module performance evaluation un-

der the real operating environments. DC parameters including full I-V curves,

Voc, Isc, Vmpp, Impp, Pmpp together with module temperature are measured and

logged every minute. Environmental parameters including in-plane solar irra-

diance Gsi, ambient temperature Tamb, module temperature Tmod, wind speed

and wind direction are logged simultaneously with the DC parameters. Be-

tween I-V measurements, electrical energy is maintained at the module maxi-

mum power point (MPP). The uncertainty of all electrical measured parameters

is within ±0.1% for full scale. With these I-V data in time series, the diode

model parameters can be identified online by the proposed method and corre-

lated to the environmental factors like irradiance, temperature, etc.

Figure 7 shows the time series of Gsi, Tamb and Tmod on a typical day from

the OMT testbed of Solar Energy Research Institute of Singapore (SERIS). The

plot is centred around the solar noon, which was at 13 : 10 on the 5 August

2010.

By applying the proposed method in Section 3, the time-varying one-diode

model parameters IL, Io, a, Rs and Rsh for the same day are identified, as

shown in Figure 8. The variation of the identified parameters reflects the dynam-

ics of the PV module under different environmental conditions, which cannot be

seen from the static I-V curves.

The relationships between the identified parameters and the environmental

operating conditions are further illustrated in Figure 9-12. A proportional rela-

tionship between IL and irradiance intensity is observed in Figure 9. It is also

apparent from Figure 10 that Io generally shows an increasing trend with rising
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Figure 7. Environmental factors of a typical day in SERIS’ OMT testbed.

module temperature. This also agrees with the theoretical temperature depen-

dence of Io, as given by Io = BT 3e−Eg/(kT ), where Eg is the band gap of

silicon and B is a temperature independent constant [14]. Figure 11 illustrates

that a generally decreases with increasing irradiance for Gsi < 300 W/m2 and

increases beyond that, which is as reported in [64]. When irradiance decreases

in Figure 12, the series resistance Rs decreases and the shunt resistance Rsh

increases, which is consistent with previous reported results [65]. The decrease

in Rs is due to the decreased thermal loss (I2Rs) with decreasing irradiance.

The RMSE of the proposed algorithm in OMT case is shown in Figure13,

where the burden of the online calculation for convergence (iterative steps for

Rs until Tol or maximum cycle is achieved) is presented as well. Among 600
plus I-V scans during the day, there are only three cases with the RMSE ex-

ceeding the preset 1% Tol when the maximum number (100) of steps is reached.

Even for these three cases, the RMSE is still below 1.5%. The iterative steps

are very stable, and they are usually less than 30. This indicates that the online

calculation burden of the proposed algorithm is low and the identification can

be done by an industrial PC locally between two consecutive I-V scan (1 min

in our case).
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Figure 8. Identified one-diode model parameters.

5. Comparison with Other Methods

In this section, the comparison of the proposed method with the approaches of

iterative searching (based on Lambert W function) and evolutionary algorithms

(mainly DE and GA) are discussed because they represent the most accurate

estimation of PV model parameters.

5.1. Lambert W Function Based Method

In [32], two data sets of I-V curves (26 points) are presented, which are ini-

tially proposed in [39] and are commonly used to test the effectiveness of the

extraction algorithms. One refers to a solar module (Photowatt-PWP 201) at
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Figure 13. RMSE and burden of online calculation.

45◦C and the other refers to a solar cell (c-Si) at 33◦C, as shown in Table 1.

The one-diode model parameters IL, Io and Rsh are proved to be functions of

Rs and a. So the searching in the two-dimensional parameter space of Rs and

a with the constrained conditions of (4), (5) and (7) yields Solution A; with the

constrained conditions of (4), (5) and (6) yields Solution B. These two solutions

are then fine tuned as the initial values of some nonlinear least square for the

experimental data, which yields Solution C and D, respectively.

The comparison of the solutions of one-diode model by the propose and

Lambert W function based method are shown in Table 2, where “MAE” is the

mean absolute error and “Step” is the number of iterative searching cycle before

convergence. It is clear to see that the proposed method gives a very close results

to Lambert W function based method. Although the error is slightly bigger, the

number of iteration steps is less.

The error mainly arises from the numerical integrations presented in Sec-

tion 3.4 and the few I-V data samples available (26 points only). If more data

samples on the I-V curve are known, the error of the proposed method will be

reduced. To illustrate this point, model parameters from the solution of Lau-

dani 1D was used to reproduce the whole I-V curve with the help of (16). The
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Table 1. Experimental I-V data [32]

Module Cell
SN

Voltage (V) Current (A) Voltage (V) Current (A)

1 −1.9426 1.0345 −0.2057 0.7640

2 0.1248 1.0315 −0.1291 0.7620

3 1.8093 1.0300 −0.0588 0.7605

4 3.3511 1.0260 0.0057 0.7605

5 4.7622 1.0220 0.0646 0.7600

6 6.0538 1.0180 0.1185 0.7590

7 7.2364 1.0155 0.1678 0.7570

8 8.3189 1.0140 0.2132 0.7570

9 9.3097 1.0100 0.2545 0.7555

10 10.2163 1.0035 0.2924 0.7540

11 11.0449 0.9880 0.3269 0.7505

12 11.8018 0.9630 0.3585 0.7465

13 12.4929 0.9255 0.3873 0.7385

14 12.6490 0.9120 0.4137 0.7280

15 13.1231 0.8725 0.4373 0.7065

16 14.2221 0.7265 0.4590 0.6755

17 14.6995 0.6345 0.4784 0.6320

18 15.1346 0.5345 0.4960 0.5730

19 15.5311 0.4275 0.5119 0.4990

20 15.8929 0.3185 0.5265 0.4130

21 16.2229 0.2085 0.5398 0.3165

22 16.5241 0.1010 0.5521 0.2120

23 16.7987 −0.0080 0.5633 0.1035

24 17.0499 −0.1110 0.5736 −0.0100

25 17.2793 −0.2090 0.5833 −0.1230

26 17.4885 −0.3030 0.5900 −0.2100

number of samples are selected to be 50, 100, 200. Based on such samples on

the I-V curve derived from Laudani 1D solution, the RMSE of the proposed

method to the whole I-V and the experimental data are shown in Table 3. As

expected, the more data samples, the smaller RMSE. When data samples in-
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Table 2. Solution comparison for solar module

Parameters Proposed Laudani 1A Laudani 1B Laudani 1C Laudani 1D

IL (A) 1.0334262 1.032173 1.033537 1.0323759 1.0323759

Io (µA) 2.4424001 3.035367 2.825571 2.5188885 2.5188848

Rs (Ω) 1.2307473 1.218407 1.224053 1.2390187 1.2390187

Rsh (kΩ) 0.6034037 0.783516 0.689321 0.7456443 0.7456431

a (NsnkTc/q) 1.2975122 1.319345 1.312115 1.3002458 1.3002456

RMSE (10−3 ) 2.4777 2.1176 2.1547 2.0465 2.0465

MAE (10−3) 1.8461 1.6425 1.6060 1.6917 1.6917

Steps 8 12 10 19 28

creased to 100, the RMSE for the experimental data is already better than the

solutions of Laudani 1A/B and all the other results compared in [32].

Table 3. RMSE with different data samples (Module)

Source Solutions RMSE1 RMSE2 Steps

From 50 pts 3.3085×10−4 2.2290×10−3 8

Module3 From 100 pts 8.5583×10−5 2.0939×10−3 13

From 200 pts 2.0177×10−5 2.0874×10−3 12

From 50 pts 3.6098×10−4 9.9881×10−4 8

Cell4 From 100 pts 8.8401×10−5 8.6810×10−4 9

From 200 pts 2.2234×10−5 8.5153×10−4 10

1 for the whole I-V curve 2 for the experimental data in [32]
3 I-V curve is produced from Laudani 1D
4 I-V curve is produced from Laudani 2D

The result comparison for the solar cell I-V data in [32] is shown in

Table 4. The RMSE of the proposed method is smaller than the results of

Laudani 2A/C, and only slightly bigger than Laudani 2B/D. When data samples

increased to 100, the proposed method already outperformed Laudani 2B, as

shown in Table 3.
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Table 4. Solution comparison for solar cell

Parameters Proposed Laudani 2A Laudani 2B Laudani 2C Laudani 2D

IL (A) 0.7609438 0.764114 0.761060 0.7706871 0.7607884

Io (µA) 0.3456572 0.003496 0.290125 0.003668522 0.3102482

Rs (mΩ) 36.14233 45.438 36.8 49.11298 36.55304

Rsh (Ω) 49.482205 11.103851 49.973561 11.103904 52.859056

a (10−2) 3.9256187 2.9929942 3.8784080 2.997888 3.8965248

RMSE (10−3) 1.0548 11.388 0.88437 8.9605 0.77301

MAE (10−3) 0.85202 9.4014 0.69732 7.2064 0.67810

Steps 8 8 7 14 16

In general, Lambert W function based method has many benefits in two

aspects:

• It utilizes the Lambert W function to convert a non-concave optimal prob-

lem into a concave optimal problem;

• It utilizes reduced forms to decrease the dimension of the parameter space

from five to two.

This method can deal with the I-V data from the data sheet (points at SC, OC,

MPP) or experiment (full I-V curve), and in most of cases, it yields the best

results in terms of RMSE and/or MAE.

The deficiencies of Lambert W function based method may be:

• No unique solutions;

• Inapplicable to the multi-diode model (m > 1) parameter identification

due to the limitations of Lambert W function;

• Not easy to be implemented and unsuitable for online parameter identifi-

cation.

The proposed method further reduces the dimension of the parameter space

to one. It uses linear square other than nonlinear optimal algorithms to derive

diode model parameters, so the drawbacks of nonlinear algorithms are avoided.

It can also be used for multiple-diode model and simple enough to be imple-

mented as online calculation. The deficiencies is that it requires the knowledge

of the full I-V curve data.
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5.2. Evolution Algorithms

As mentioned in the Introduction, evolution algorithms are very suitable for the

search of a global optimal solution. Recently, two types of evolution algorithms

using differential evolution (DE) [50] and genetic algorithm (GA) [45] yield

good results for diode model parameter identification. Since no full I-V curve

data are provided in [45,50], we do the comparison in an indirect way as follows.

Firstly, use the identified parameters (IL, Io, a, Rs and Rsh) to reconstruct the

I-V curve by (16); Secondly, use that I-V curve data to identify diode-model

parameters with the proposed method. Since DE and GA are applied to derive

a, Rs and Rsh only (IL and Io are derived by formulas in [2, 58]), we only

compare the results of a, Rs and Rsh. Table 5 shows the results of a, Rs and

Rsh from the proposed method and DE/GA. It is clear to see that the differences

in between are very minor.

Table 5. Solution comparison with evolution algorithms

Module Solutions a (NsnkTc/q) Rs (Ω) Rsh (Ω)

Shell SM55 Proposed 1.2666 0.3001 2.3165×103

(mono-cSi) DE 1.2665 0.3 2.34×103

Shell S75 Proposed 1.2300 0.2000 1.7834×103

(multi-cSi) DE 1.2295 0.2 1.79×103

Sanyo 215 Proposed 2.1778 0.7821 851.2464

(HIT) GA 2.1780 0.782 852.177

Kyocera 200 Proposed 1.5340 0.3310 882.7933

(multi-cSi) GA 1.5337 0.331 883.925

The result of the two-diode model for the aforementioned Kyocera module

(Kyocera - KC200GT) was also reported in [45]. It is interesting to comparing

this result with ours. If looking carefully at the comparison shown in Table 6,

the GA algorithm gives comparable Io1 and Io2 (both in 10−9 A). a1 and a2 are

also near to each other. If ignoring the differences between them, the two-diode

can be combined as one. This implies that GA algorithm actually gives a result

of one-diode model but mathematically divides it into two diodes format with no

physical meaning. That’s a common issue for the global optimization algorithm

like DE and GA, whereas the proposed method has no such problems.
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Table 6. Comparison of two-diode models

Parameters GA Proposed

a1 (V) 1.5420 1.4936

a2 (V) 1.9095 0.4944

Rs (Ω) 0.29 0.4095

Rsh (Ω) 480.496 842.8287

Io1 (A) 4.23×10−9 1.6044×10−9

Io2 (A) 9.1478×10−9 2.6559×10−29

MAE 0.02 0.0058

6. Graphical Meaning

In the previous sections, we showed the effectiveness of the proposed method

to accurately extract diode model parameters from the I-V characteristics. This

section illustrates the underlying principle from the angle of control theory by

an illustration of the graphical meanings of the proposed method.

As control theory is usually studied for stable systems, coordinate transfor-

mation in Section 3.6 is applied, i.e., Ṽ = Voc−V so that I-Ṽ is corresponding

to some stable linear system. After transformation, I-V curve in Figure 4 is

changed to I-Ṽ (blue line) in Figure 14. Draw a straight line (black) starting

from O(0, 0) with the slope of 1/Rs, i.e., Y = X/Rs, with the same I , the coor-

dinates of the points on the black and blue lines will be Q(RsI, I) and P (Ṽ , I),

respectively. Therefore, x̃ = Ṽ − RsI actually represents the distance between

P and Q (green arrow). If Y ′ = X/Rs is constructed as the new Y -axis, then

only in XOY ′ coordinate system, I-Ṽ curve is equivalent to a response of some

linear system. In normal XOY coordinate system, this is not the case unless

each point on the I-Ṽ curve is shifted a variable distance of RsI to the Y -axis,

which is shown by red dash line in Figure 14.

Note that for the response of a stable linear system with zero initial con-

ditions, both x and y values are monotonically increasing, which means dis-

tance |PQ| is monotonically increasing with I . If 1/Rs < dI/dṼ |Ṽ =0 =
−dI/dV |V =Voc , the black line will intersect with the blue one so that the mono-

tonically increasing of |PQ| is violated, see Figure 15. Therefor, 1/Rs ≥
−dI/dV |V =Voc , which yields the upper bound of Rs discussed in Section 3.5
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Figure 14. The I-Ṽ characteristic from I-V .

Figure 15. Impact of Rs on the profile of I-Ṽ .
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Figure 16 shows the impact of Rs on the RMSE of the proposed method,

where I-V characteristic data are from the same indoor flash test module dis-

cussed in Section 4.1, and 0 ≤ Rs ≤ −dV/dI |V =Voc . One sees clearly that

the accuracy of the proposed method is very sensitive to Rs, which implies that

only when Rs is properly selected, the resulted I-Ṽ is the response of a linear

system. Such high sensitivity results in the unique solution of Rs and the rest

of PV model parameters, and the effectiveness of the binary search algorithm

proposed in Section 3.5.
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Figure 16. Impact of Rs on the RMSE of the proposed method.

7. Applications

7.1. Non-Contact Measurement of POA Irradiance and

Cell Temperature

Irradiance on plane of array (POA) and cell temperature are important to PV

systems because system performance, evaluated by performance ratio (PR), is

derived from them. Usually, silicon sensors are applied in PV systems to mea-

sure the irradiance level on POA, as shown in Figure 17. Their structure is com-
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Figure 17. POA irradiance measurement by silicon sensor.

posed of a high-quality mono-crystalline solar cell connected to a high accuracy

shunt, which is the same as Figure 2, where IL is the photocurrent proportional

to the POA irradiance, the diode represents the mono-crystalline cell, and Rsh

is the shunt. The low shunt (Rsh = 0.1Ω) causes the cell to operate close to

the short-circuit point, which makes Ish → IL so that POA irradiance can be

calibrated from Ish according to the proportionality.

Essentially, silicon sensors use an internal reference cell as a benchmark to

sense the POA irradiance of PV modules/systems. The measurement accuracy

highly depends on the differences between: 1) reference cell and PV modules;

2) IL and Ish. However, mismatch between reference cell and PV modules is

inevitable and IL 6= Ish although compensation measures for temperature are

taken into account. All of them cause the mismatch error up to ±5%, and the

sensor needs to be recalibrated every two years to avoid the measurement shift

caused by the degradation of reference cell.

A more accurate irradiance sensor is pyranometer, which covers the full

spectrum of solar radiation (300-2, 800 nm) from a field of view of 180 degrees.

It is seldom deployed in PV systems due to: 1) much higher cost as compared

to silicon sensor; 2) mismatch in spectrum as crystalline is not a full spectrum

absorber; 3) is not applicable to measure POA irradiance.

Temperature measurement for PV systems is even worse than POA irradi-

ance measurement because what is measured is not the true cell temperature

but the temperature of the back sheet of modules. This is because cells are en-

capsulated between the layers of glass, EVA, back sheet during the process of

lamination. However, it is also impractical to incorporate a sensor within the
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module, in direct contact with an individual cell, to measure the cell tempera-

ture. In addition, the non-uniformity of module temperature across the module

area, which was assumed to be ±1 ◦C in [66], is not accounted for with this

approach. The current compromise is to put a sensor attached to the back sheet,

which causes the cell temperature measurement to be roughly 2−3◦C lower than

the true value. At a standard irradiance level of 1000W/m2, a mean cell-to-back

temperature difference of 2.5± 1 ◦C was adopted in [67] for c-Si modules with

plastic back encapsulation.

It is much desired to find a more accurate way to measure the POA irradi-

ance and cell temperature as more and more PV systems are installed all over

the world, not only for the academic research, but also for the commercial in-

vestment evaluation. Motivated by the recent progress in the diode model pa-

rameter identification [68,69], photocurrent IL and reverse saturation Io can be

linearly determined from the I-V characteristics of PV modules. Immediately,

POA irradiance Gs = λIL, where λ is a constant slope (to be calibrated) and

independent of irradiance or temperature [2]. Cell temperature Tc is derived

from Io = BT 3
c e−Eg/(kTc), where Eg is the band gap of silicon and B is a

temperature independent constant [14]. No external sensors for irradiance or

temperature is required once the I-V curve is known.

7.1.1. Calibration of POA Irradiance

As mentioned before, the photocurrent IL is proportional to POA irradiance Gs,

i.e., Gs = λIL, and λ is the slope. To calibrate λ, the I-V characteristics of a

full-sized commercial module were measured indoor by a PASAN IIIB with the

constant illumination intensity of 200, 400, 600, 800, 1000, 1200W/m2. The

temperature for such flash tests is fixed at 25◦C.

Figure 18 shows the family I-V characteristic of a PV module (crystalline)

from the proposed indoor flash test, where estimation results by the identifi-

cation method from Section 3 are indicated by circles. The estimation results

obtained from the identified diode model parameters match closely to the I-V

curves from the indoor flash test. The identified diode model parameters and

RMSE compared to the real I-V curves are listed in Table 7, which illustrate

the accuracy of the proposed identification.

Based on the results from Table 7, Figure 19 shows the correlation between

Gs and IL. As expected, IL is proportional to Gs. The non-zero intercept is

caused by measurement error, which brings the uncertainty of irradiance esti-
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Figure 18. Indoor flash test at different illumination intensity.

Table 7. Identification results

Illumination IL Io a Rs Rsh RMSE

(W/m2) (A) (10−9A) (V) (Ω) (kΩ) (×10−3)

200 1.08 0.4782 1.9411 0.5293 1.8321 0.0849

400 2.18 0.4757 1.9407 0.6278 1.3512 0.1410

600 3.23 0.4745 1.9404 0.6339 1.3414 0.1809

800 4.33 0.4741 1.9401 0.6345 1.5710 0.2130

1000 5.41 0.4725 1.9399 0.6347 1.8408 0.2380

1200 6.48 0.4786 1.9397 0.6347 2.1330 0.2569

mation up to 0.006/0.0054 = 1.11 W/m2. The slope λ from Gs = λIL is

determined by λ = 1/0.0054 = 185.1852.
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Figure 19. Determination of λ from Gs = λIL.

7.1.2. Calibration of Cell Temperature

Cell temperature is derived from Io = BT 3
c e−Eg/(kTc), where Eg is the band

gap of silicon and B is a temperature independent constant [14]. Both B and Eg

are required to be calibrated. To do the calibration, the I-V characteristics of the

same module in Section 7.1.1 were measured by the PASAN IIIB in a thermal

chamber. The illumination intensity is fixed at 1000W/m2 and the chamber

temperature are set at 15◦C, 25◦C, 35◦C, 45◦C, 55◦C, 65◦C.

Figure 20 shows the results of the flash test at different temperature levels,

where the circles represent the estimated I-V curves by the proposed identifi-

cation. The identified diode model parameters and RMSE compared to the real

I-V curves are listed in Table 8.

With the identified Io from Table 8, taking logarithmic to Io gives,

ln Io = lnB + 3 lnTc −
Eg

kTc
, ⇒

ln Io − 3 lnTc = −
Eg

k
T−1

c + ln B. (56)

Let y = ln Io−3 lnTc, x = 1/Tc, α = −Eg/k and β = ln B, (56) becomes y =
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Figure 20. Indoor flash test at different temperatures.

Table 8. Identification results

Temperature IL Io a Rs Rsh RMSE

(◦C) (A) (10−9A) (V) (Ω) (kΩ) (×10−3)

15 5.38 0.0326 1.7970 0.6326 1.8486 0.2676

25 5.41 0.4756 1.9399 0.6347 1.8409 0.2375

35 5.43 5.8101 2.0883 0.6367 1.8335 0.2089

45 5.45 61.544 2.2420 0.6378 1.8283 0.1810

55 5.48 564.16 2.4012 0.6388 1.8180 0.1550

65 5.50 4546.3 2.5659 0.6399 1.8075 0.1305

αx + β. The relationship between x and y are shown in Figure 21. With linear

fitting, α = −22122 and β = 35.637. Thus, Eg = −kα = 3.0543 × 10−19

and B = eβ = 2.9988× 1015. After Eg and B are known, the cell temperature

Tc can be numerically determined by Newton-Raphson method with the initial

Tc = 300 K.
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Figure 21. Calibration of Eg and B.

7.1.3. Outdoor Verification

To validate the proposed non-contact measurement for POA irradiance and cell

temperature, the same module after the indoor calibration was put at outdoor

module testing bed for a whole day with the continuous recording of I-V curves

and meteorological data. By applying the proposed method in Section 3, the

time-varying one-diode model parameters IL, Io, a, Rs and Rsh for the same

day are identified, which has been discussed in Section 4.2 and the results are

shown in Figure 8. The variation of the identified parameters reflects the dynam-

ics of the PV module under different environmental conditions, which cannot be

seen from the static I-V curves. With the identified diode model parameters, the

POA irradiance and cell temperature can then be derived.

Based on the calibration value λ from Section 7.1.1, the POA irradiance can

be determined from IL by Gs = λIL. Figure 22 illustrates the comparison to

the results from a reference silicon sensor which has the same inclined angle

as the PV module. As seen from Figure 22, the non-contact measurement POA

irradiance matches the irradiance measurement from the silicon sensor well.

With the calibrated Eg and B from Section 7.1.2, cell temperature Tc is

numerically determined by Newton-Raphson method. The comparison between
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Figure 22. POA irradiance: non-contact measurement vs. reference cell.

Tc and Tmod (backsheet measurement) is shown in Figure 23. One can see that

when irradiance increases in the morning, Tc is usually higher than Tmod, which

is due to the positive temperature gradient (from cell to backsheet) during that

time. Whereas after solar noon when irradiance decreases, temperature gradient

becomes negative due to the thermal delay, so Tc is lower than Tmod. But the

difference in between is within ±2◦C.

7.2. PV Panel Characterisation for Satellites

When PV panels are used in satellites, it is usually not allowed to do the flash test

sweeping from OC to SC because the power supply must be stable to maintain

the normal operation of satellites. Hence, to do the PV panel characterisation

for satellites in operation, I-V scan is limited within a small range around MPP,

i.e., I ∈ [I1, I2] and V ∈ [V1, V2]. With the example of one-diode model, it
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Figure 23. Cell temperature: non-contact measurement vs. backsheet-attached

sensors.

follows from (3) that

I1 = IL + Io − Ioe
V1+RsI1

a −
V1 + RsI1

Rsh
, (57)

I = IL + Io − Ioe
V +RsI

a −
V + RsI

Rsh
. (58)

Let ∆I = I − I1 and ∆V = V − V1, (58) − (57) yields

∆I = Ioe
V1+RsI1

a

(

1 − e
∆V +Rs∆I

a

)

−
∆V + Rs∆I

Rsh
. (59)

Let y = ∆I and x = ∆V + Rs∆I , (59) becomes

y = Ioe
V1+RsI1

a

(

1 − e
x
a

)

−
x

Rsh
. (60)

Taking differential once for (60) gives

dy

dx
= −

Io

a
e

V1+RsI1
a e

x
a −

1

Rsh
. (61)
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Differentiating twice gives

d2y

dx2
= −

Io

a2
e

V1+RsI1
a e

x
a . (62)

Eliminating ex/a from (61) and (62) gives

a
d2y

dx2
−

dy

dx
=

1

Rsh
,

which is just the same as (21). The remaining procedures are very similar to

what we did in Section 2.1 except for the initial conditions. From (60) and (61),

y(0) = 0 and y′(0) = −Ioe
(V1+RsI1)/a/a − 1/Rsh, respectively. According to

(24), the transfer function

G(s) =
ay(0)s2 + [ay′(0)− y(0)]s + 1

Rsh

as2 − s
=

−(Ioe
V1+RsI1

a + a
Rsh

)s + 1
Rsh

as2 − s
.

The corresponding time domain differential equation is

a
d2y(t)

dt2
−

dy(t)

dt
= −

(

Ioe
V1+RsI1

a +
a

Rsh

)
du(t)

dt
+

u(t)

Rsh
, (63)

where t = x and u(t) ≡ 1. With the help of double integral in (39), (63) is

equivalent to

ay(t) +

(

Ioe
V1+RsI1

a +
a

Rsh

)∫ (1)

[0,t]
u(τ) −

1

Rsh

∫ (2)

[0,t]
u(τ) =

∫ (1)

[0,t]
y(τ).

Let θ = [a, Ioe
V1+RsI1

a + a
Rsh

, 1
Rsh

]T , φ(t) = [y(t),
∫ (1)
[0,t] u(τ),−

∫ (2)
[0,t] u(τ)]T

and γ(t) =
∫ (1)
[0,t] y(τ), then the least square solution for θ is given by

θ =
(

ΦTΦ
)−1

ΦTΓ,

where Φ = [φ(t1), · · · , φ(tN)]T and Γ = [γ(t1), · · · , γ(tN)]T . Thus,

a = θ1,

Io = (θ2 − θ1θ3)e
−

V1+RsI1
θ1 ,

Rsh =
1

θ3
.
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Rs is determined by the same binary search algorithm in Section 3.5 as before,

and IL is derived from (57) as follows once Io, a, Rs and Rsh are all determined.

IL = I1 − Io + Ioe
V1+RsI1

a +
V1 + RsI1

Rsh
.

Conclusion

In this chapter, an approach on linear system identification is developed, which

links the diode model parameters to the transfer function coefficients of a dy-

namic system. This approach solves the PV model parameters by an integral-

based linear least square method, which reduces the dimension of the search

space from 5 to 1, so the drawbacks of nonlinear algorithms are avoided. Graph-

ical meanings of the proposed method are illustrated to help readers understand

the underlying principles. Finally, a discussion of the possible applications of

the proposed method like online PV monitoring and diagnostics, non-contact

measurement of POA irradiance and cell temperature, fast model identification

for satellite PV panels are presented.
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Abstract

Photovoltaics (PV) degradation is a key consideration during PV

performance evaluation. Accurately predicting power delivery over the

course of lifetime of PV is vital to manufacturers and system owners.

With many systems exceeding 20 years of operation worldwide, degrada-

tion rates have been reported abundantly in the recent years. PV degrada-

tion is a complex function of a variety of factors, including but not limited

∗E-mail address: yangdazhi.nus@gmail.com
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to climate, manufacturer, technology and installation skill. As a result, it

is difficult to determine degradation rate by analytical modeling; it has to

be measured.

As one set of degradation measurements based on a single sample can-

not represent the population nor be used to estimate the true degradation

of a particular PV technology, repeated measures through multiple sam-

ples are essential. In this chapter, linear mixed effects model (LMM) is in-

troduced to analyze longitudinal degradation data. The framework herein

introduced aims to address three issues: 1) how to model the difference in

degradation observed in PV modules/systems of a same technology that

are installed at a shared location; 2) how to estimate the degradation rate

and quantiles based on the data; and 3) how to effectively and efficiently

plan degradation measurements.

1. Introduction

The installed photovoltaic (PV) capacity has exceeded 227 GW around the

globe in April 2016 [1], with the majority of installations realized only in the

past few years. Aside from various environmental benefits of adopting PV

power, the increasing PV installation is also motivated by financial benefits

that have become apparent in the recent years, when grid parity has occurred

in many places in the world. PV degradation is a key consideration during PV

performance evaluation, not only concerning the manufacturers, but also sys-

tem developers and owners. This chapter studies the PV degradation through a

statistical model. More importantly, the degradation measurement planning is

discussed.

1.1. Motivations

Typically, the installation of a PV power plant consists of three phases, namely,

the development, construction, as well as operations and maintenance (O&M)

phases. Having an accurate estimation of PV degradation is highly critical for

the owners and investors of PV power plants, especially during the development

and the O&M phases. Despite the substantial drop in the cost of PV power

world-wide, the initial capital cost required to set up a sizable, utility-scale PV

power plant can still be very taxing on the liquidity of PV power plant owners.

Consequently, the owners typically turn to development banks or other financial

institutions with deep pockets for financing. The estimation of PV degrada-

Complimentary Contributor Copy



PV Degradation 125

tion rate thus plays an important role in securing significant equity and/or debt

financing, which is a key step in the development phase of a project. The de-

velopment banks or financial institutions would generally involve third-party

technical advisors to estimate the levelized cost of electricity (LCOE), the ratio

of the total cost of the PV power plant to the total energy yield produced by the

PV power plant over its entire lifecycle, and thus calculate the return on invest-

ment for a PV power plant. As the estimation of the degradation rate directly

affects the LCOE of a PV power plant, it relates to the amount of financing

obtainable.

In the event of an overestimation of the degradation rate (predicted degrada-

tion is greater than the actual degradation), resulting in a lower predicted total

energy yield produced over the lifetime of a PV power plant, the financing can

be undesirably decreased, or in the worst case scenario, unapproved. In the case

of an underestimation of the degradation rate (predicted degradation is smaller

than the actual degradation), the predicted total energy yield may become higher

than the actual yield. This seemingly favors the securing of financing in the

development phase, but ultimately it will be detrimental for the O&M phase,

which typically stretches over a long period of 20 to 25 years. Although it

is possible to justify a couple of years of underperformance of the PV power

plant with the unforeseen “bad” weather, an underestimation of the degradation

rate would potentially imply consecutive years of underperformance of the PV

power plant. In such situation, depending on the financing terms and conditions

from the development banks or financial institutions, a full or partial lock-down

of the revenues from the sale of electricity of the PV power plant through power

purchased agreements, or feed-in tariffs, will be triggered until certain release

conditions are fulfilled. Thus, in order to secure a significant amount of financ-

ing, while protecting the owners of the PV power plants from the possibility of

a revenue lockdown, an accurate estimation of degradation rate is required.

Aside from being the interest of PV plant owners and investors, PV degra-

dation is also important for the manufacturers to set their warranty. In the in-

creasingly competitive market, it has become popular for the manufacturers to

provide peak power warranty for their PV modules. The typical module man-

ufacturer power output warranty increased from 5 years to 25 five years since

1985 [2]. Such warranty usually comes in one of two forms: 1) warranting the

maximum annual power decline of PV modules to be less than a certain per-

centage (such as 0.7%), and 2) warranting the peak power to be above a certain

percentage of the nameplate power (such as 80%) at the end of a period (such
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as 25 years). Both warranty schemes require accurate information on degrada-

tion, or more specifically, the information on PV power degradation quantile.

In statistics and probability theory, quantiles are points that divide a probability

distribution into contiguous intervals with equal probabilities. The definition

itself may be less known, but the examples of quantiles, namely, quartiles and

percentiles, are well-known. As degradation rate is only a point estimate, i.e.,

a number; it does not provide the information on PV degradation distribution.

Manufacturers would thus need to consider the degradation quantile in their

warranty setting. For example, if the degradation rate is estimated to be 0.7%

per year (this can be thought of as the median, if a normal distribution is as-

sumed), it is impractical for the manufacturers to set their warranty exactly at

0.7%, since 50% of the modules are likely to experience a degradation larger

than that. Such improper warranty would lead to mass replacement or repair of

modules, and thus harm the manufacturers financially.

1.2. PV Degradation Preliminaries

As degradation rate is receiving more attention, many researchers have reported

degradation rates based on available data. Comprehensive reviews of published

degradation rates can be found in Refs. [2, 3]. Ref. [4] reviewed some of the

mechanisms which cause PV degradation. Degradation in PV can be quantified

at the module level [5, 6] and system level [7, 8]. Based on the study by Jor-

dan and Kurtz [2], the mean degradation rates of modules and systems differ

by only small margins, despite their distinct degradation mechanisms. For such

reasons, this chapter only provides a simulation example on module degrada-

tion. Nevertheless, the methods to measure system degradation are provided for

referencing.

PV degradation is studied across different technologies [9, 10, 11, 12]. Five

mainstream technologies are often seen in the literature, namely, amorphous

silicon, cadmium telluride, copper indium gallium selenide, mono-crystalline

silicon and multi-crystalline silicon. Among these technologies, crystalline sil-

icon received the most attention at the reported time [2]. Therefore, in the later

analysis, without loss of generality, crystalline silicon modules are used. For

crystalline silicon technologies, the degradation rates observed in the first year

of operation are much higher due to early degradation mechanisms, such as the

light induced degradation (LID) [13]. Therefore, it is more amenable to remove

this “burn-in” year from the simulation.
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Figure 1. Simulated degradation paths for 12 collocated crystalline silicon mod-

ules from the same manufacturing batch. Simulation is performed based on

Eq. (6), see below.

As mentioned earlier, the nameplate power measured under standard test

conditions (STC) is a commonly used parameter to describe the expected mod-

ule energy output. However, even for modules with the same nameplate power,

the actual energy production may be significantly different [13]. Some factors

that lead to these differences are climate, manufacturing process and installation

skill, etc. During a degradation study, these factors can be eliminated by con-

sidering PV modules of a same manufacturing batch and installed at a shared

location. Nevertheless, other factors that affect the peak power, such as different

degrees of LID, as well as the intricate loss propagation in each module, are dif-

ficult to control, if not to eliminate at all. The degradation rate estimation thus

cannot depend on few measurements of a single sample; repeated measures are

essential.
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Before we describe the degradation model based on repeated measures, a

set of typical degradation curves is shown. Figure 1 shows the degradation

curves for 12 crystalline silicon modules; simulation (detailed in Section 3) is

used to generate these curves. It is assumed that these modules have identical

nameplate information and are installed at a shared climatic condition. Further-

more, the early degradation effects are removed from the simulation, so that the

degradation of the remaining years can be assumed to be linear. Although some

publications use an exponential degradation model [14]; it is shown that for a

typical starting degradation rate, the models do not differ significantly up to 25

years [15].

In the following sections, we are going to look at: 1) how the degrada-

tion curves shown in Figure 1 can be modeled using the linear mixed effect

model (LMM); 2) how to estimate the parameter values and quantile informa-

tion through the LMM; and 3) how to effectively and efficiently plan the degra-

dation measurement. Degradation measurement planning in this case refers to

the design of degradation experiment, which includes design parameters such

as the sample size, period of study, measurement frequency and types of mea-

surement.

2. Modeling, Parameter Estimation and Measurement

Planning

Repeated measures are defined if an outcome is measured repeatedly within a

set of units [16]. In our current context, a unit could be a PV module or system,

depending on the type of degradation measurements. These collected data are

called longitudinal data if they are taken over time [17].

2.1. Degradation Model

Suppose we collect mi degradation measurements of unit i, where i = 1, · · · , n
denotes the samples, and let yij be the measured degradation of unit i at time

tij , where j = 1, · · · , mi, the linear degradation model is given by:

yij = b0,i + b1,itij + εij , (1)

where b0,i and b1,i denote the intercept and the gradient of the linear model for

unit i; εij denotes a random effect. The term Di = b0,i + b1,itij is called the
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true degradation path for unit i. Symbol mi is used to denote the (possibly)

different numbers of measurements for each unit, as longitudinal data are often

unbalanced [18, 19].

We have discussed earlier that PV degradation is a complex function of a

variety of factors. In this chapter, we do not consider contributing factors that

may have significant impacts on degradation, such as environmental and climate

condition, technology and manufacturer. Under such arrangement, the intercept

and gradient in Eq. (1) can be modeled using a bivariate normal distribution,

(b0, b1)
> ∼ BVN(β, V ) with mean vector

β = (β0, β1)
> (2)

and covariance matrix

V =

(
σ2

b0
ρσb0σb1

ρσb0σb1 σ2
b1

)
. (3)

It should be noted that b0 and b1 are random variables, and b0,i and b1,i are a

particular realization of these random variables, i.e., the intercept and gradient

for unit i. The practical relevance and implications of the above BVN assump-

tion are more described in Section 3. The probability density function (pdf) of

BVN distribution is:

f(b0, b1; β, V ) =
1

2πσb0σb1

√
1− ρ2

exp

[
− κ

2(1 − ρ2)

]
, (4)

where

κ =

(
b1 − β1

σb0

)2

+

(
b2 − β2

σb1

)2

− 2ρ

(
b1 − β1

σb0

)(
b2 − β2

σb1

)
. (5)

2.2. Linear Mixed Effects Model

Linear mixed effects model is perhaps the most fundamental model for analyz-

ing longitudinal data. Its general form is given as:

Yi = Xiβ + Zib
∗

i + εi, (6)

where Xi and Zi are matrices of known covariates [18]. In this model, β is the

fixed effects and b∗i is the unit-specific effects. The degradation model, Eq. (1),

Complimentary Contributor Copy



130 Dazhi Yang, Licheng Liu, Carlos David Rodrı́guez-Gallegos et al.

can be related to the above matrix equation with notations used in Section 2.1,

i.e., Yi = (yi1, · · · , yimi
)>, εi = (εi1, · · · , εimi

)> and b∗i = (b∗0,i, b
∗

1,i)
>; it can

be expressed as:

yij = (β0 + b∗0,i) + (β1 + b∗1,i)tij + εij, (7)

where (b∗0, b
∗

1)
> ∼ BVN(0, V ). Furthermore, we have:

εi ∼ MVN(0, σ2Ii); (8)

V(b∗i , εi) = 0; (9)

Xi = Zi =




1 ti1
...

...

1 timi



 (10)

and Ii is an mi by mi identity matrix. We do not distinguish between LMM and

degradation model hereafter.

Eq. (8) implies that εi is independent and normally distributed. Eq. (9) re-

veals that b∗i and εi are independent. Under these settings, Yi has a multivariate

normal distribution with mean vector Xiβ and covariance

Σi = V(Yi) = ZiV Z>

i + σ2Ii, (11)

which is a special case of the repeated-measured models in Ref. [19], i.e, Yi ∼
MVN(Xiβ, Σi). The multivariate normal random vector Yi has pdf:

f(yi; Xiβ, Σi) =
1

(
√

2π)mi |Σi|1/2
exp

[
−1

2
(yi − Xiβ)>Σ

−1

i (yi − Xiβ)

]
, (12)

where |Σi| is the determinant of Σi.

2.3. Parameter Estimation

We have presented the degradation model in the previous sections. In order to

use the model to describe a particular set of data, model parameters need to be

estimated. Standard ways for parameter estimation include method of moments,

maximum likelihood (ML) method and Bayesian method; we use ML method

in this chapter. Maximum likelihood estimator (MLE) of a parameter θ is the

value of θ that maximizes L(θ), the likelihood function of θ. As maximizing a

log-likelihood function, `(θ), leads to the same answer as maximizing L(θ), we

consider `(θ) here. In this case, it is easier to work with `(θ).
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By observing Eq. (12), we know that the MVN is controlled by its mean

vector Xiβ and covariance matrix Σi. These two parameters are controlled by:

θ = (β0, β1, σb0, σb1, ρ, σ)>. (13)

Suppose y1, · · · , yn are independent observations from Y1, · · · , Yn, respec-
tively, following Ref. [19], the total log-likelihood for n units is:

`(θ) =

n∑

i=1

`i(θ) = const. − 1

2

n∑

i=1

(yi − Xiβ)>Σ
−1

i (yi − Xiβ) − 1

2

n∑

i=1

log |Σi|,

(14)

where `i(θ) is the log-likelihood for observational unit i. We use θ̂ to denote

the ML estimate of θ.

2.4. Degradation Quantiles

The parameters of an LMM are estimated through the ML method. The in-

formation attained so far is sufficient for many PV degradation applications.

For example, β̂1 (the ML estimate of β1) can be considered as the estimated

degradation rate. Other quantities, such as the degradation quantile, can also be

derived from θ̂.

Recall that the true degradation at time t is D = b0 + b1t, D can be consid-

ered as a function of random variables. For the present case, b0 and b1 follow a

BVN distribution, their sum can be shown to be normally distributed with mean

and variance being:

E(D) = E(b0 + b1t) = β0 + β1t (15)

and

V(D) = V(b0 + b1t) = σ2
b0 + t2σ2

b1 + 2tρσb0σb1 , (16)

respectively. The p quantile of the degradation distribution at time t is:

dp(t) = E(D) +
√

V(D)Φ−1(p), (17)

where Φ−1(p) is the probit function. Mathematically, it is the inverse of Φ(z),

the standard normal CDF. For example, Φ(−1.96) = 0.025 and Φ−1(0.025) =

−1.96. Let d̂p(t) be the ML estimate of dp(t), it can be directly obtained by

evaluating Eq. (17) at θ̂:

d̂p(t) = β̂0 + β̂1t + Φ−1(p)
√

σ̂2
b0

+ t2σ̂2
b1

+ 2tρ̂σ̂b0σ̂b1. (18)
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2.5. Preliminaries for Degradation Measurement Planning

In statistics, estimators (such as MLE) are random variables; their distributions

are called sampling distribution. On the other hand, estimates are numbers com-

puted from data. For simplicity, we do not distinguish them in terms of notations

in this chapter. However, the concept should not be mixed up.

The estimates θ̂ and d̂p(t) are known as point estimates; point estimation

provides a single “best guess” of some quantity of interest [20]. However, point

estimates are often insufficient; the knowledge of the sampling distributions

is also important, especially during measurement planning where confidence

intervals are of interest. The standard deviation of an estimator is called the

standard error, denoted by se. In particular, we are interested in the standard

error of the MLE of the p quantile, namely, se(d̂p). To derive se(d̂p), Fisher

information is useful.

2.5.1. Fisher Information

Let random variable X have a distributionf(x; θ), the score function (a function

of θ) is defined to be:

s(X ; θ) =
∂`(θ)

∂θ
=

∂ log f(x; θ)

∂θ
, (19)

i.e., the derivative of the log-likelihood. The Fisher informationI(θ) is defined

as:

I(θ) = Eθ

[
s2(X ; θ)

]
=

∫ (
∂`(θ)

∂θ

)2

f(x; θ)dx. (20)

As Eq. (20) can be difficult to evaluate sometimes, an alternative definition can

be used:

I(θ) = −Eθ

(
∂2`(θ)

∂θ2

)
. (21)

A proof of Eq. (21) can be found in Ref. [21], page 242.

In our present case, the parameter θ can be written into θ =
(β0, β1, σb0, σb1, ρ, σ)> = (β>, ϑ>)>, the Fisher information of unit i can be
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evaluated by considering the Hessian matrix [19]:

Hi =

(
Hββ,i Hβϑ,i

Hϑβ,i Hϑϑ,i

)
=





∂2`i(θ)

∂β∂β

∂2`i(θ)

∂β∂ϑ
∂2`i(θ)

∂ϑ∂β

∂2`i(θ)

∂ϑ∂ϑ



 . (22)

We thus have

Ii(θ) =

(
X>

i Σ
−1
i Xi 0

0 Mi

)
, (23)

where the element on row r and column s of the symmetrical 4 by 4 matrix Mi

is:

Mi,rs =
1

2
tr(Σ−1

i Σ̇irΣ
−1
i Σ̇is), (24)

r, s = 1, · · · , 4 and the explicit representations of Σ̇ir or Σ̇is are obtained by

differentiating Eq. (11) with respect to each parameter in ϑ:

Σ̇i1 =
∂Σi

∂ϑ1
=

∂Σi

∂σb0

= Zi

(
2σb0 ρσb1

ρσb1 0

)
Z>

i ; (25)

Σ̇i2 =
∂Σi

∂ϑ2

=
∂Σi

∂σb1

= Zi

(
0 ρσb0

ρσb0 2σb1

)
Z>

i ; (26)

Σ̇i3 =
∂Σi

∂ϑ3
=

∂Σi

∂ρ
= Zi

(
0 σb0σb1

σb0σb1 0

)
Z>

i ; (27)

Σ̇i4 =
∂Σi

∂ϑ4
=

∂Σi

∂σ
= 2σIi. (28)

The Fisher information for all n units is the sum of the Fisher information for

each unit:

I(θ) =

n∑

i=1

Ii(θ). (29)

2.5.2. Standard Error of MLE

The Fisher information matrix is used to calculate the standard error and co-

variance matrices associated with ML estimates. Wasserman [20] states the

following theorem:
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Theorem 1. (Asymptotic Normality of the MLE) Let se =

√
V(θ̂). Under

appropriate regularity conditions, the following hold:

1. se ≈
√

1/I(θ) and

(θ̂ − θ)

se
 N(0, 1). (30)

2. Let ŝe =

√
1/I(θ̂). Then,

(θ̂ − θ)

ŝe
 N(0, 1). (31)

Symbol denotes convergence in distribution. (end of theorem)

The first statement of the theorem says that θ̂ ≈ N(θ, se). The second

statements says that even when the standard error is replaced by the estimated

standard error, the asymptotic normality is still true. This theorem can thus be

used to construct the asymptotic confidence interval for θ̂. If we extend the

theorem to multi-parameter cases [20], we have:

Theorem 2. Under appropriate regularity conditions,

(θ̂ − θ) ≈ MVN(0, J (θ)), (32)

where J (θ) = [I(θ)]−1 is the inverse of the Fisher information matrix. (end of

theorem)

The details of those regularity conditions mentioned in the above theorems

can be found in Chapter 12 of Ref. [21]. Following Theorem 2, we have:

V(θ̂) = [I(θ)]−1, (33)

where V(·) denotes the approximated variance-covariance matrix of the MLE.

In other words, the ŝe
2 of each parameter is given by the corresponding diagonal

term of J (θ); the covariance between the parameters are given the off-diagonal

terms of J (θ). An estimate of V(·) at the ML estimates is denoted by V̂(θ̂).
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2.5.3. Standard Error and Confidence Interval of the Degradation

Quantiles

The estimate of the approximated variance-covariance matrix of the MLE can

be obtained through the inverse of the Fisher information matrix. With this

information, together with the degradation quantile dp evaluated at the ML es-

timates (denoted by d̂p(θ̂) or simply d̂p), the standard error of the quantile can

be estimated through the delta method. In statistics, the delta method is used to

estimate the approximate probability distribution for a smooth function, g, of an

asymptotically normal statistical estimator (such as MLE). In the present case,

g(θ̂) is Eq. (17), namely, the quantile function of the degradation.

Wasserman [20] states the following theorem:

Theorem 3. (Multiparameter delta method) Suppose that ∇g evaluated at θ̂ is

not 0. Let τ̂ = g(θ̂). Then

(τ̂ − τ)

ŝe(τ̂)
 N(0, 1), (34)

where

ŝe(τ̂) =

√
(∇̂g)>V̂(θ̂)(∇̂g), (35)

∇̂g is ∇g evaluated at θ = θ̂. (end of theorem)

In our case, ∇g is the (column) vector of partial derivatives of dp with re-

spect to the parameters. The elements of this vector are:

∂dp/∂β0 = 1; (36)

∂dp/∂β1 = t; (37)

∂dp/∂σb0 = ζ(2σb0 + 2tρσb1); (38)

∂dp/∂σb1 = ζ(2t2σb1 + 2tρσb0); (39)

∂dp/∂ρ = ζ(2tσb0σb1); (40)

∂dp/∂σ = 0, (41)

where

ζ =
Φ−1(p)

2
√

σ2
b0

+ t2σb1 + 2tρσb0σb1

. (42)
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The estimated standard error of the quantile of degradation distribution at

the ML estimates is thus given by:

ŝe(d̂p) =

√
ĉ>V̂(θ̂)ĉ, (43)

where c is the (column) vector of partial derivatives of dp. The 1 − α% confi-

dence interval of the estimated quantile is thus given by:

d̂p ± zα/2ŝe(d̂p), (44)

under the normal-based interval.

2.6. Section Summary

This section discusses the modeling and parameter estimation for PV degrada-

tion. A linear degradation model is first presented. Its equivalent LMM is then

outlined. A total of six parameters, namely, β0, β1, σb0, σb1, ρ and σ, are esti-

mated using the ML method. With the estimated parameters, the degradation

quantile dp(t) at time t could be evaluated through Eq. (18). However, as a sin-

gle value (a point estimate) carries limited information about the distribution of

d̂p, the standard error and confidence interval of d̂p are given in Eqs. (43) and

(44), respectively. To derive the representations of standard error and confidence

interval, the Fisher information and several theorems are used.

3. Simulation Study on PV Degradation Planning

In this section, we use simulation to describe the planning method for PV degra-

dation. In particular, we are going to look at how degradation measurement

settings would affect the uncertainties in degradation estimates. In our context,

degradation measurement settings refer to factors such as type of degradation

measurements, number of test units and number of measurements for each unit.

We note that this simulation study does not advise on the “optimal” settings for

degradation measurements, because the appropriate settings depend on a vari-

ety of factors. Furthermore, the tolerance for standard error and the acceptable

range for confidence intervals may also vary based on different expert views.

We thus present a visual representation of various concepts outlined in the pre-

vious section.
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In the simulation study below, we consider PV modules as the degradation

test units. More specifically, a total of 12 crystalline modules are assumed. By

assuming the units are collocated modules from a same manufacturing batch,

some factors (e.g., climate, technology and manufacturer) that can affect the

degradation are eliminated.

3.1. Low- and High- Accuracy Degradation Experiments

Three methods of measurement are commonly used for PV degradation studies

[22]: 1) the regression-based low-accuracy experiment (LE) through outdoor

monitoring data, 2) the LE through outdoor I–V measurements, and 3) the high-

accuracy experiment (HE) though the indoor I–V measurements. Similar to

many other engineering problems (see Refs. [23, 24, 25] for other examples on

low- and high-accuracy experiments), the LE data in PV degradation are more

accessible as compared to the HE data. To fully utilize the results from LE, the

outcomes from the HEs are often used to benchmark various LEs to determine

their accuracies [22]. Although LEs in general have a lower cost as compared

to HE, the limitation of the LEs is obvious during the decision making process

of the manufacturers, for example, setting the degradation warranty based on

inaccurate degradation rates leads to financial risks [26].

Among the three degradation experiments listed above, the first experiment

is commonly used to determine the degradation of PV systems or sub-systems,

while the latter two experiments are used when the test units are PV modules.

Although the units used in this simulation study are set to be modules, we de-

scribe all three experiments below to give the readers a general understanding

on each experiment.

3.1.1. Low-Accuracy Degradation Methods

Low-accuracy degradation experiments use regressions and outdoor monitoring

data to determine degradation rates. The regressor (explanatory variable) is

usually time, while the regressands (explained variable) are different metrics.

Consider a linear regression problem y = b0 + b1t + ε, the term metric is used

by Jordan and Kurtz [22] to denote y. After the regression, the degradation rate

is reflected by the fitted value b̂1, i.e., the gradient of the fitted line.

When the test units are PV systems, examples of metrics include perfor-

mance ratio (PR), PR with temperature correction [27], DC/GPOA [28] and

PVUSA [29]. These four metrics were summarized by Jordan and Kurtz [22].
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While these metrics depend on irradiance data (see below) which is not always

available, other irradiance-independent metrics have been proposed [30]. On

the other hand, when the units are modules, examples of metrics include max-

imum power (Pmax), open-circuit voltage (Voc), short-circuit current (Isc) and

fill factor (FF ). These metrics were described and used by Smith et al. [31].

The core idea of LEs is to use the drops in certain metrics to represent degra-

dation in PV modules/systems over time. It is therefore important to consider

various types of corrections and data filtering. PR is perhaps the most com-

monly used metric to measure system performance. In mid-latitude regions, PR

varies within a year with winter showing a relatively higher PR than summer.

This observation is mainly due to the lower module temperature in winter. Mod-

ule temperature is thus commonly used to adjust the seasonal variation in PR.

For example, Dierauf et al. [32] proposed a PR correlation method where PR is

normalized by removing the weather dependency. Conventional PR is given by:

PR =

∑
t ENAC,t

∑
t

[
PSTC

(
GPOA,t

GSTC

)] , (45)

while the weather-corrected performance ratio, PRcorr, is:

PRcorr =

∑
t ENAC,t

∑
t

{
PSTC

(
GPOA,t

GSTC

)[
1 − γ(Tmod typ avg − Tmod,t)

]} , (46)

with γ being the temperature coefficient for power, with a typically value of

−0.4%/◦C; ENAC being the measured AC power generation (in kW); PSTC

being the nameplate power (in kW); GPOA being the in-plane irradiance (in

kW/m2); GSTC being the STC irradiance (1 kW/m2); Tmod being the module

temperature (in ◦C) and Tmod typ avg being the average cell temperature com-

puted from a typical meteorological year.

The summation in the above equations can be calculated over any defined

period of time, may it be days, weeks, months or years. It is shown that the

seasonal cycles in the PR can be effectively removed using this weather cor-

rection regardless if monthly or daily PR is used [32]. Besides the corrections

in PR, data filtering is also commonly used to remove certain data points. For

example, an irradiance filter can be applied to remove data points far from STC;

a module temperature filter can be used to remove data points which deviate
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largely from the Tmod typ avg. In addition, outlier filters and stability filters are

also frequently involved in the data quality control process [22].

As previously mentioned, the metrics used to determine module degrada-

tion are usually different from those for systems. In order to compute metrics

such as Pmax, Voc and Isc, I–V measurements (I–V curves) are required. The

commercial I–V curve tracers are commonly equipped with the capability of

generating the values of these metrics. More advanced mathematical models

[33] that are only suitable for off-chip computation are also available. On this

point, we refer the readers to another chapter of this book, namely, PV Panel

Modeling and Identification, for a detailed tutorial. Comparing to the indoor

measurement (see below), a drawback of the outdoor I–V measurement is that

the ambient condition is uncontrolled in this experiment. This leads to the need

of minimizing the effect of weather on degradation rate determination; data fil-

tering is essential in this LE. Data filtering here aims at identifying the data

points that are close to the STC, for example, an irradiance filter that includes

only data points with deviations of ±20 W/m2 from the STC irradiance could be

considered. We refer the readers to [31] for a detailed example on data filtering,

in which the authors studied the degradation of 12 crystalline silicon modules

over a period of 17 years.

The advantage of conducting LEs is that the experiments can be performed

remotely once the measurement devices are in place. As compared to the HE,

the cost of LE can be lower as well, especially when the monitoring equipment

becomes more affordable and reliable. On the other hand, although appropriate

measurement equipment setup and data filtering could minimize the uncertainty

in the LEs to a certain extent, the outdoor experiments still suffer from soiling

and other degradation mechanisms that are hard to trace through monitoring

data. In the later sections, we further discuss the trade-off between cost and

accuracy for different degradation experiments.

3.1.2. High-Accuracy Degradation Methods

High-accuracy degradation experiments rely on measuring the I–V curves of a

PV panel at fixed time intervals under indoor conditions [2]. Due to the depen-

dency on indoor test facilities, HE is usually performed by shipping the mod-

ules back to the manufacturers. This embeds high costs into the degradation

experiment. For such reasons, it is common (about 74% of all degradation rates

reported in the literature) to conduct indoor I–V measurements only once; the
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measurements are then compared to the nameplate rating of a module [3]. The

inherent assumption is the accuracy of the nameplate rating, which may possess

significant variance, especially when early degradation mechanisms are not ex-

cluded from the experiments.

3.2. Examples on Parameter Estimation Using MLE

In Section 3.1, low- and high-accuracy degradation experiments are discussed.

As the degradation study can be based on different metrics, without loss of gen-

erality, we consider percentage of nameplate power at STC as the regressand.

We begin our simulation study by setting the degradation parameters. A total of

six parameters, namely, β0, β1, σb0 , σb1 , ρ and σ, are used to parameterize the

degradation model. The numeric values of these parameters are justified and set

as follows.

PV modules experience early degradation such as LID during the first year

of operation. To simulate the approximate 3% drop in the first year, the intercept

of true degradation curve β0 is set at 97. It was reported that some crystalline

modules may have more than 4% power loss after the first weeks of operation

[13], σb0 = 0.5 is used to represent the variations of early degradation among

the sample modules. This means that the PV modules under simulation preserve

97% of the nameplate power at STC at time t = 0 with a standard deviation of

0.5. It is noted that t = 0 denotes the beginning of the simulation, one can

consider this to be the beginning of the second actual operating year. Only the

simulation time reference t will be used hereafter.

In Ref. [2], a rich literature review is presented on the degradation rate of

crystalline silicon technology. It was found that the average degradation rate

of crystalline silicon technology is 0.7%/year, i.e., β1 = −0.7. Further to that,

σb1 = 0.1 is interpreted from Ref. [2] to denote the variation in the degradation

rate distribution, see Fig. 5 from Ref. [2] for this interpretation.

We assume that the intercept and gradient of the degradation path can be

modeled using a BVN distribution with correlation ρ. In reality, this parameter

does not carry significant physical implication. However, it is reasonable to as-

sume modules with higher β0 values degrade slower. Therefore, a small positive

correlation between b0 and b1, ρ = 0.3, is set.

The final model parameter σ represents the error term. It should be set

differently for HE and LE. In HE, it can be assumed that the error is small;

σ = 0.5 is set to represent the year-to-year experimental variations in practicing
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the HE. In LE, experimental errors are higher; σ = 2 is set to represent the

uncertainties due to imperfect data filtering, soiling and other mechanisms that

may affect the variance in module power output.

Considering an expected PV lifetime of 25 years, the simulated output

power (in % of the nameplate power) for the 12 modules over a period of 24

years (the burn-in year is not simulated) is plotted in Fig. 1 using the HE as-

sumptions and Eq. (1). To obtain these curves, 12 sets of (b0, b1) values are first

drawn from the BVN distribution parameterized by β and V . The true degrada-

tion paths (Di) are then produced usingDi = b0,i+b1,itij , where i = 1, · · · , 12,

j = 1, · · · , mi and mi = 24, ∀i. Noise terms are then added to Di using ran-

dom samples drawn from N(0, σ2), where σ = 0.5. Using MLE, the estimated

HE parameters are: β̂0 = 96.982, β̂1 = −0.706, σ̂b0 = 0.481, σ̂b1 = 0.087,

ρ̂ = 0.443 and σ̂ = 0.516. These estimated parameters agree with our earlier

simulation settings, showing the precise estimations from MLE. Similarly, us-

ing the LE simulated data, the ML estimates are β̂0 = 96.858, β̂1 = −0.709,

σ̂b0 = 0.405, σ̂b1 = 0.086, ρ̂ = 0.631 and σ̂ = 2.062.

3.3. Degradation Quantiles Evaluated at ML Estimates

True degradation D is normally distributed. This is visualized in Figure 2; the

data used for plotting are computed with the LE settings. At any time t, the

expected value and variance of the normal distribution can be evaluated at the

ML estimates through Eqs. (15) and (16). Figure 2 shows the pdfs of D at

t = 0, 4, · · · , 24, the evolution of the pdfs of D is apparent. In Section 2.4,

degradation quantiles are formulated based on the distribution of D. Using the

ML estimates we obtained earlier, degradation quantiles can be computed via

Eq. (18). Three example quantiles, namely, d̂0.001 (dotted line on x–y plane),

d̂0.5 (solid line) and d̂0.95 (dashed line), are shown. This quantile information is

critical for manufacturers or system developers to set their warranty.

As mentioned earlier, point estimates have their limitations. Considering

standard errors and confidence intervals of the degradation quantiles may help

manufacturers or system developers to make their decisions. Standard errors

and confidence intervals can be computed via Eqs. (43) and (44), respectively.

Figure 3 shows the 95% confidence intervals for d̂0.5 based on 5 and 15 years

of LE data.

The computation for the confidence intervals depends on the amount of in-

formation available. By examining Eq. (44), it is noted that the confidence
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Figure 2. Evaluations of the 0.001 (dotted line on x–y plane), 0.50 (solid line),

0.95 (dashed line) degradation quantiles at ML estimates of the LE.

interval depends on d̂p and ŝe(d̂p). After the model parameter θ is estimated

based on whatever available data, may it be 5, 10 or 15 years of data, d̂p can be

evaluated for any time t. The solid black lines in Figure 3(a) and 3(b) are d̂0.5

for t = 1, · · · , 24; and the two lines are identical. In other words, quantiles do

not depend on the amount of information but depend only on θ̂, see Eq. (18).

On the other hand, ŝe(d̂p) =

√
ĉ>V̂(θ̂)ĉ depends on the amount of informa-

tion, since V̂(θ̂) is the inverse of the estimated Fisher information matrix. From

Eq. (23), we know that I(θ) depends on the amount of data, i.e., Xi and Zi

represent the available data. Thus, the confidence intervals estimated based on

5 and 15 years of data are different.

Going back to Figure 3, as expected, the width of the confidence interval
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Figure 3. The 95% confidence intervals of 0.50 degradation quantile based on 5

and 15 years of data. The estimated 0.5 quantiles are shown as the solid black

line. The shaded regions denote the confidence intervals.

is narrower when more information is available. It should be noted that the

confidence intervals plotted in Figure 3 are for the 0.5 quantile; they should not

be mixed up with the gray band plotted on the x–y plane of Figure 2.

3.4. Degradation Measurement Planning Using a Simple Test Plan

The discussion so far has assumed that the degradation measurements are avail-

able at the time of analyses. However, from a planner’s perspective, it is nec-

essary to decide the type of experiments, number of measurements and number

of test units, as degradation monitoring is often associated with financial con-

straints. The cost of LE includes equipment cost and overheads. While it is

common to employ monitoring systems at PV farms, when the farm scale be-

comes large, setting up a single weather station is most likely insufficient. On

the other hand, gauging every sub-system may be an overkill. A trade-off needs

to be made between degradation estimation accuracy and cost. The composition

of the HE cost is different from that of the LE. HE in PV degradation is indoor

I–V measurements. Once the modules/systems are deployed, it becomes diffi-

cult to conduct I–V measurements especially when the installation is remote.

If the manufacturers were to conduct the degradation studies, shipping cost is

predominant. In either of the LE or HE case, the number of measurements and
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number of units are of interest.

We use the standard error of degradation quantile to reflect the degradation

estimation accuracy. As shown in Figure 2, the confidence interval of degra-

dation quantile is a function of time t. From Eq. (44), it is seen that this time

dependency is originated from the standard error, i.e., ŝe(d̂p) is also a func-

tion of time. However, it should be noted that although the ŝe at different time

t = 1, · · · , 24 are different, the discussion below is applicable for all t. We use

t = 15 as an example, i.e., the degradation quantile at the end of 15 years is of

interest.

Figure 4 (a) shows the contour plot of the estimated standard error of the

estimated 0.50 quantile for an HE, ŝe(d̂0.50), at the end of the evaluation period.

The contour plot can be interpreted as follows. The case of n = 3 and m = 3
corresponds to the situation whereby three units are each measured three times

during the course of 15 years at t = 0, t = 7.5 and t = 15, respectively. Under

this setting, the estimated standard error is ŝe(d̂0.50) = 0.95, reflected by the

contour line at the bottom left corner of Fig. 4 (a). Similarly, ŝe(d̂0.50) = 0.5,

a smaller standard error, is found for the setup with n = 11 units and m = 3
measurements. It can be concluded from the “vertical” contour lines that in

the HE simulation, fewer number of measurements (per module) can be used

without losing much accuracy. Instead, the degradation standard error relies

more on the number of units used in HE.
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Figure 4. Contour plot of ŝe(d̂0.50) at the end of evaluation period using differ-

ent number of units and different number of measurements.

Complimentary Contributor Copy



PV Degradation 145

For a comparison of HE and LE errors, Figure 4 (b) shows the contour plot

of the estimated standard error for an LE setting. The time of evaluation is also

set as t = 15; and the contour lines correspond to ŝe(d̂0.50). In contrast to the

HE, standard error for the LE is more sensitive to the number of measurements.

The improvement in accuracy can be achieved in the LE by increasing either

the number of measurements or the number of units. However, it is observed

that for same m and n values, LE yields a higher standard error than HE. This

is largely owing to the higher measurement uncertainties embedded in the LE.

Figure 4 shown above demonstrates how the number of units (n) and mea-

surements (m) can affect the standard error estimation, and thus affect the plan-

ning method for degradation studies. However, 15 years (as used in Figure 4)

may be considered long for a PV degradation study; a shorter period of study

such as 5 or 10 years may be more appropriate. On this point, we analyze the

extrapolation of degradation quantile standard error below. In other words, we

are going to look at how ŝe(d̂p) will be projected (up to 25 years for example)

when different runtimes of the experiment are considered.

Fig. 5 (a) shows the standard error of the 0.5 quantile, d̂0.5, as a function

of time, for different HE studies. The HE degradation studies are assumed to

be conducted over periods of 5, 10 and 15 years. In all three simulations, the

number of units is set as 12, and the degradation for each unit is measured once

every year throughout the period of study. For example, for the 5 year study, a

total of 60 measurements are made to compute the standard error curve shown

in Fig. 5 (a). Based on the available data of each case, the standard errors are

extrapolated using the degradation model for the remaining years of a typical PV

lifetime. It can be seen that the standard error projection at 25 years decreases

as the runtime of the experiment increases.

The simulation result of the LE with the same degradation measurement

settings is shown in Fig. 5 (b). With no surprise, the standard errors of the LE

are higher than those of HE. Nevertheless, it is found that the standard error

from the LE is comparable to that of the HE when the study period is long

enough, such as a period of 15 years.

The above simple test plan enables PV module manufacturers to plan the

degradation studies effectively. Although the examples were given for 0.5 quan-

tile, the approach can be readily applied to any quantile. For example, a similar

analysis on the 0.001 quantile can be useful during warranty policy making.

The particular choice of experiment and setup can be decided by experts based

on some specific tolerable upper bound of the standard error. Together with the
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Figure 5. ŝe(d̂0.50) as functions of time for the HE and LE.

above mentioned cost constraints for HE and LE, the problem can be considered

as a multi-objective optimization task. However, the solution to this task is not

within the scope of this chapter.

Conclusion

A practical PV degradation model is introduced in this chapter. The degradation

model is based on the linear mixed effect model and contains six parameters;

it enables flexible simulation and design exercises for photovoltaic degradation.

Instead of using the conventional regression based methods for gradient estima-

tion, maximum likelihood estimation is used to identify the degradation rate to-

gether with other parameters, simultaneously. The degradation model used here

not only provides accurate estimates of the most used parameter, the degradation

rate, it also gives quantile estimates of PV degradation. The quantile informa-

tion gives additional insights for making warranty policy.

Three types of PV degradation experiments are discussed in detail. The low-

accuracy experiments are performed in the outdoor conditions; their accuracy

is limited by various uncertainties primarily due to ambient weather condition

and soiling, which can otherwise be controlled in an indoor measurement envi-

ronment. It is found that the accuracy of the high-accuracy experiment is rather
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independent of the number of measurements made over the period of a degra-

dation study. To improve the accuracy of an HE, more degradation test units

should be considered. On the other hand, the accuracies of the LEs depend on

both the number of measurements and number of units.

All the degradation experiments described in this chapter depend on the

length of the evaluation period, number of measurements and cost. Therefore,

due the design of an degradation experiment, a multi-objective optimization

could be formulated.
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ABSTRACT 

Solar power is always the ultimate energy source on earth. Solar energy 
not drives the hydrologic cycle and wind, but also produces biomass 
including ancient fossil fuels and present foods. Solar energy is one of the 
potential renewable energy and has been actively promoted by many 
countries. In this study, the policy and promotion strategy of solar energy 

                                                        
* Corresponding author: E-mail address: bai@ms6.hinet.net, Tel.: +886-4-22183541, Fax: +886-

4-22183540. 

Complimentary Contributor Copy



Tzu-Yi Pai, Keisuke Hanaki, Yi-Ti Tung et al. 152 

developments between Taiwan and Japan were surveyed and compared. The 
results showed that the solar power increased significantly in the past ten 
years. The cumulative capacity of solar energy (CCSE), solar power 
generation (SPG), and the ratio of SPG to total power generation for Taiwan 
in 2014 gave on 615.2, 533.1, and 466.2 times than those in 2005. The CCSE, 
SPG, and the ratio of SPG to TPG for Japan in 2014 gave on 16.5, 16.4, and 
17.6 times than those in 2005. Besides, an analytic hierarchy process (AHP) 
structure was proposed for decision makers to make decisions to prioritize 
and select policy and promotion strategy of solar energy developments. 
Taiwan and Japan have launched solar PV R&D in the 1980s and 1970s, 
respectively. In the early 2000s, Taiwan enacted the RED Act and rewarded 
the solar power generation system invested by folk investment to increase the 
use of renewable energy. Japan enacted the RPS Law and Feed-in Tariffs 
policy towards the aim of promoting the new energy electricity. 

INTRODUCTION 

Energy resources have massively deteriorated because human beings consume 
unlimitedly. Currently, fossil fuels account for about 88 percent of all 
commercial energy worldwide. The energy supply will be a serious challenge 
in the future because of the almost diminished reserves. According to the 
report from World Energy Council, the oil shale and other nontraditional 
deposits still contain massive amount of petroleum, therefore several countries 
actively extract the shale oil at present. Even the extraction of shale oil lowers 
the increase trend of oil price, high oil price strongly affects energy security of 
Taiwan and Japan because both nations mainly export overseas energy from 
other countries. Consequently, the combustion of fossil fuel releases a large 
amount of carbon dioxide and enhance the global warming [1-2]. 

Renewable energy is the type of energy that can be harvested from nature 
and can naturally replenish on a human timescale including solar energy, wind 
energy, geothermal heat, hydraulic energy, tide energy, and wave energy. 
Renewable energy can eliminate the demand for fossil fuels because it can 
replace conventional fossil fuels in several distinct areas [3-8].Therefore active 
promotion of renewable energy has become an important option among many 
countries to simultaneously conquer the problem of global warming and 
energy stress. Solar energy is regarded as the most potential renewable energy 
and has been aggressively promoted by many nations’ governments in the 
world. 

Solar power is always the ultimate energy source on earth. Solar energy 
not drives the hydrologic cycle and wind, but also produces biomass including 
ancient fossil fuels and present foods. The average amount of solar energy that 
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the earth receives is about 10000 times all the energy consumed in one year 
[1]. 

Solar energy exhibits advantages in several aspects. Although the amount 
of solar energy that reaches the earth’s surface varies geographically, the solar 
energy is still sufficient and competitive for economical production even at 
high latitudes, as in northern Europe or Japan. In 2014, the U.S. utility-scale 
solar energy costs as little as 5.6 cents per kWh, as compared to gas at 6.1 
cents and coal at 6.6 cents [1]. 

A typical solar energy usage is solar thermal system. A typical solar 
thermal system consists of a glass vacuum tube or a glass-covered flat panel, 
heat exchanger, some thin pipes, and driving liquid. The hot water can be 
made by running the driving liquid (such as antifreeze contained water) 
through thin pipes in the tube or panel. The driving liquid often reaches high 
temperatures of 95 Centigrade. 

The driving liquid with high temperature then is introduced into a heat 
exchanger. The water in heat exchanger is subsequently heated for direct use 
or for space heating. At least 330 GW of solar thermal systems have been built 
worldwide, more than two times of the installed solar-photovoltaic (PV) 
capacity. Solar thermal systems are common in some countries such as China, 
but they are less common in the North America and Europe than solar PV 
systems. 

Another way for capturing solar energy is concentrating solar power 
(CSP) system. CSP often use parabolic mirrors to concentrate and reflect 
sunlight on a central tube containing a heat-adsorbing liquid. Then the heat-
adsorbing liquid is introduced into a hot exchanger for making hot water for 
direct use or producing steam for electricity generation. 

In addition to solar thermal system and CSP, solar PV system can 
transfer the solar energy to electrical current directly. In the past three 
decades, the energy efficiency of PV cell has increased from less than 1 % to 
more than 10 % under field condition. At least 140 GW of solar PV systems 
have been installed globally [1]. 

To actively promote solar energy, many studies have pointed out that the 
policy and promotion strategy of solar energy developments are the successful 
key. 

Therefore the policy and promotion strategy of solar energy developments 
between Taiwan and Japan were compared in this study. By studying the 
survey results, the viewpoints will be summarized to serve as a reference for 
the government to promote the solar energy in the future. 
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SOLAR POWER GENERATION IN TAIWAN AND JAPAN 

Total Power Generation 

According to Figure 1, Taiwan’s total power generation (TPG) continuously 
increased from 227419.9GWh in 2005 to 260026.7GWh in 2014, i.e. increased 
by 14.3 % in the past twenty years [9, 10]. 

Contrarily, Japan’s TPG slightly increased from 882558.6GWh in 2005, 
peaked in 2007 (919543.891GWh), gradually decreased to 823004.9GWh in 
2014, i.e. totally decreased by 6.7 %. Especially, after the Fukushima No.1 
nuclear incident in 2011, Japan’s TPG significantly decreased from 
906417.2GWh in 2010 to 859808.7 GWh in 2011, i.e. decreased by 5.1 % in 
the single year [11]. Since the impact of Fukushima No.1 nuclear incident was 
broad and long-lasting, not only the public’s behavior of energy usage changed 
dramatically, but also the public opinion switched from “accepting-nuclear” 
stance to “anti-nuclear and pro-renewables”. 

Cumulative Capacity of Solar Energy 

In 2005, the cumulative capacity of solar energy (CCSE) was only 1.0 MW in 
Taiwan. In the recent ten years, the solar energy was developed in Taiwan. 

 

 

Figure 1. The total power generation for Taiwan and Japan from 2005 to 2014. 
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Figure 2. The cumulative capacity of solar energy for Taiwan and Japan from  
2005 to 2014. 

According to Figure 2, the CCSE in Taiwan significantly increased from 
1.0 MW in 2005 to 615.2 MW in 2014. The CCSE for Taiwan in 2014 gave on 
615.2 times more capacity than that in 2005 [9-10]. 

In 2005, the CCSE was 1403.0 MW in Japan. According to Figure 2, the 
CCSE in Japan significantly increased from 1403.0 MW in 2005 to 23213.0 
MW in 2014. The CCSE for Japan in 2014 gave on 16.5 times more capacity 
than that in 2005 [11]. 

Solar Power Generation 

Since the CCSE is actively installed in both Taiwan and Japan, the solar power 
generation (SPG) increased significantly from 2005 to 2014 as shown in 
Figure 3. In accordance with Figure 3, the SPG in Taiwan significantly 
increased from 0.96GWh in 2005 to 511.73GWh in 2014. The SPG for 
Taiwan in 2014 gave on 533.1 times more generation than that in 2005 [9-10]. 

Japan’s SPG also increased continuously from 1421.0 GWh in 2005 to 
23339.0 GWh in 2014. The SPG for Japan in 2014 gave on 16.4 times more 
generation than that in 2005 [11]. 

Ratio of SPG to TPG 

With the SPG and TPG data, the ratio of SPG to TPG could be calculated 
further. 
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Figure 3. The solar power generation for Taiwan and Japan from 2005 to 2014. 

In the past decade, the ratio of SPG to TPG was promoted in both Taiwan 
and Japan. According to Figure 4, the ratio in Taiwan significantly increased 
from 0.0004 in 2005 to 0.1968 in 2014. The ratio for Taiwan in 2014 gave on 
466.2 times than that in 2005. 
Japan’s ratio also increased continuously from 0.161 in 2005 to 2.836 in 2014. 
The ratio for Japan in 2014 gave on 17.6 times than that in 2005. 

APPLICATION OF ANALYTICAL HIERARCHY PROCESS 

For promoting solar energy, the analytic hierarchy process (AHP) theory was 
used to identify the priority of the policy and promotion strategy for solar 
energy developments [3-6]. AHP is a priority measurement proposed by Saaty 
in the 1970s [12-13]. A chaotic problem can be decomposed into several 
hierarchy levels using AHP. With this method, the chaotic problem forms a 
hierarchy structure in which the hierarchical relationships between different 
levels are constructed [3-6]. 

First Stage Test 

The criteria relating to the policy and promotion strategy of solar energy 
developments were collected and selected. According to literature review, 
several evaluation criteria were selected to form the questionnaire of first stage 
test. 

0

5000

10000

15000

20000

25000

0

100

200

300

400

500

600

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Taiwan

Japan

Year

So
la

rp
ow

er
 g

en
er

at
io

n 
(G

W
h)

So
la

rp
ow

er
 g

en
er

at
io

n 
(G

W
h)

Complimentary Contributor Copy



Comparison for Policy and Promotion Strategy … 157 

 

Figure 4. The ratio of SPG to TPG for Taiwan and Japan from 2005 to 2014. 

The Likert 5-point scale was employed to compile the questionnaire of 
first stage test. Thirty six experts from governments, universities, 
environmental organizations, and community associations of Taiwan were 
invited to fill in the questionnaires. The items were chosen according to the 
means and standard deviation. 

By calculation, 16 items with the mean top 16 weights were selected as 
the evaluation criteria to design the hierarchy structure of policy and 
promotion strategy of wind energy developments. The structure was 
decomposed in the second level containing four major criteria: (1) policies 
aspect, (2) educational promotion, (3) technical research and development, and 
(4) economic incentives. There are total 16 sub-criteria in the third level, as 
shown in Figure5 [6]. Subsequently, the criteria were used to edit the AHP 
relative weight questionnaire. 

Second Stage Test 

According to the first stage questionnaire test, the criteria were used to form 
the AHP relative weight questionnaire of second stage test. The questionnaire 
of first stage test was edited using pair-wise comparison. Eighteen 
practitioners from environmental organizations and community associations of 
Taiwan were invited to answer the questionnaires of second stage test. 
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Figure 5. The hierarchical structure to promote solar energy [4]. 

The pair-wise comparison data were allocated in the pattern of a matrix 
and calculated based on the eigenvector procedure [12-13]. 
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Figure 6. The weights of all sub-criteria for policy and promotion strategy of solar energy developments. 
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Figure 7. The evolution and progress for policy and promotion strategy of solar energy developments in both Taiwan and Japan. 
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To ensure the suitability of AHP, the consistency ratio for each of the 
matrices and overall inconsistency for the hierarchy were calculated. After 
calculation, the global weights of 16 sub-criteria were depicted in Figure 6. 

POLICY AND PROMOTION STRATEGY OF SOLAR ENERGY 

DEVELOPMENTS 

Although R&D support for solar energy began with Sunshine Project in 1970s in 
Japan, the main development for solar energy began in 1990s. Therefore the 
policy and promotion strategy of solar energy developments in both Taiwan and 
Japan were mainly surveyed from 1990 to present [11, 14-18]. 

In 1974, Japan began the Sunshine Project for R&D of PV. When this project 
was closed, another new project entitled New Sunshine Project was launched. 
Compared to Japan, Taiwan began R&D for PV in 1988. 

In the middle 1990s, two projects including the regional new energy 
promotion business and new energy companies support measures were carried out 
in Japan. In the late 1990s, the Environmental Impact Assessment Law was 
enacted in Taiwan to protect environment and to reduce the negative effects of 
development activities. In some development activities, the introduction of 
renewable energy was obligated. 

The Renewable Energy Development (RED) Act was enacted in Taiwan in 
the early 2000s to increase the application of renewable energy, to enhance the 
diversification of energy, to conserve the quality of environment, to impel the 
development of related industries, and to ensure the sustainable development of 
Taiwan. At the same time, the government began to reward the solar power 
generation system invested by folk investment 

In the early 2000s, the Special Measures Law Concerning the Use of New 
Energy by Electric Utilities or Renewables Portfolio Standards Law (hereinafter 
referred to as RPS Law) was enacted by Japan government. The RPS Law 
obligated the electric utilities to use a certain amount of new energy towards the 
aim of promoting the new energy electricity. 

In 2015, the Greenhouse Gas Reduction and Management Act (GGRM) was 
enacted in Taiwan. The objectives of GGRM Act includes (1) managing and 
reducing the release of greenhouse gas, (2) implementing the environmental 
justice, (3) taking the responsibility to protect the global environment, and (4) 
ensuring that national sustainable development in response to global climate 
change. Japan implemented Feed-in Tariffs policy to set prices for the renewable 
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power to compensate electric utilities for the higher cost of producing new energy 
electricity. 

The evolution and progress for policy and promotion strategy of solar energy 
developments in both Taiwan and Japan are summarized in Figure 7. 

According to the results of AHP, 5 sub-criteria were ranked most importantly, 
including “Implementation of international exchange and cooperation of solar 
energy education”, “Provide complete professional service, information and 
resources of complete solar energy education”, “Cooperation between domestic 
firms and international solar energy companies”, “Subsidize the firms which have 
the intention to develop and introduce new techniques”, and “Treat solar energy 
power industry as special industry”. Both Taiwan and Japan have launched the 
R&D in 1980s and 1970s, respectively. The RED Act was formulated to promote 
the renewable energy in Taiwan in the early 2000s. Taiwan government also 
began to reward the solar power generation system invested by folk investment. 
Japan formulated the RPS Law in the early 2000s to obligate the electric utilities 
to use a certain amount of new energy towards the aim of promoting the new 
energy electricity. In addition, Japan implemented Feed-in Tariffs policy to set 
prices for the renewable power. 

It revealed that the actions of governments and viewpoints of practitioners 
from environmental organizations were consistent. By studying the survey results, 
the consistent common viewpoints and actions were summarized to serve as a 
reference to promote the solar energy in the future. 

CONCLUSION 

In this study, the policy and promotion strategy of solar energy developments 
between Taiwan and Japan were surveyed and compared from 1990 to present. The 
results showed that the solar power increased significantly in the past ten years. The 
CCWE, SPG, and the ratio of SPG to TPG for Taiwan in 2014 gave on 615.2, 
533.1, and 466.2 times than those in 2005. The CCWE, SPG, and the ratio of SPG 
to TPG for Japan in 2014 gave on 16.5, 16.4, and 17.6 times than those in 2005. 

Besides, an AHP structure was proposed for decision makers to prioritize and 
select policy and promotion strategy of solar energy developments. 

Taiwan and Japan have launched solar PV R&D in the 1980s and 1970s, 
respectively. In the early 2000s, Taiwan enacted the RED Act and rewarded the 
solar power generation system invested by folk investment to increase the use of 
renewable energy. Japan enacted the RPS Law and Feed-in Tariffs policy towards 
the aim of promoting the new energy electricity. 
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The consistent common viewpoints and actions obtained from this study 
could serve as a reference to promote the solar energy in the future. 
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ABSTRACT 

Recent advances in solar harvesting technology are transforming the 
renewable energy landscape. Despite the plunging cost of silicon and the ground-
breaking efficiencies of new perovskite materials, research into “traditional” 
biomimetic, organic solar energy harvesting complexes remains important for the 
future success of solar energy. Here we discuss recent findings from studies of 
molecular donor-acceptor complexes that show promise as the active light 
harvesting components in organic solar energy systems. In particular, we focus 
upon self-assembled and covalent complexes of porphyrins (and related 
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molecules) and fullerenes as facile electron transfer partners, and highlight 
several new results. Finally, we discuss the role these types of “soft” organic-
based materials play in the solar energy marketplace, and explore how that role is 
likely to change in the future. 
 

Keywords: organic solar cells, porphyrin, fullerene, electron donor-acceptor  

INTRODUCTION 

Harvesting energy from our planet’s brightest star – the sun, is no longer an 
unfamiliar concept to us in this generation. The three critical steps in harnessing 
this abundant renewable energysource is to capture, convert, and store. Solar 
power has been achieved now in our every-day lives. There are solar panels on the 
rooftops of our, people drive solar powered cars, and we can harness the energy of 
the sun with our personal electronic devices. However, as the demand of global 
energy consumption increases, solar cells will need to perform ever more 
efficiently to fulfill the rising demand. The important question becomes: Will 
solar power be ever sufficient enough to replace the role of fossil fuels when the 
supply runs out eventually?  

The continous development of solar cells technology shows a lot of promise 
for answering this question in the affirmative. At present, there are five major 
categories of solar cell types classified by the National Renewable Energy 
Laboratory [1]. The top two highest efficiency catergories: multijunction cells 
(46%) and single-junction GaAs (29%) were developed in the late 1980’s. These 
types of cells are not easily accesible to most consumer applications due to their 
hefty price tag. They have been mainly installed on satelites and for space related 
research that require higher solar conversion efficiencies, and for which cost is not 
as much of an issue. The other three catergories are more commonly known. 
These are: crystalline silicon (c-Si), thin-film, and emerging photovoltaics (PV). 
Both c-Si and thin-film solar cells have been studied for more than 40 years. The 
emerging PV were developed just in the last two decades. Dye-sensitized solar 
cells (DSSC), organic solar cells (OSC), and perovskite solar cells (PSC), are 
amongst the highlights of emerging PV (Figure 1), and these hold great potential 
for making solar energy inexpensive and widespread. 
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Figure 1. The types of solar cells with their respective year of invention (bold) and their current certified efficiency. Data obtained from 
the latest NREL efficiency chart (20 April 2016). Clockwise from top left: crystalline silicon (c-Si), thin-film, perovskite, organic solar 

cell (OSC), and dye-sensitized solar cell (DSSC). 
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The current commercial market in PV is dominated by c-Si cells, with the 
best module efficiency of 25% [2]. The cost of c-Si modules has dropped more 
than 50% in the last 6 years from $1.9 USD per Watt-peak (Wp) to $0.6 USD/Wp 

due to the plunging cost of silicon [3].Ever since the first silicon cell from Bell 
labs reported an efficiency of 6% [4], rapid progress has been made to improve 
various components. These include adding athin layer of metal oxide to themetal 
contact to reduce charge recombination (CR) at the surface, texturing the surface 
of the silicon to increase absorption of light, and adding a layer of anti-reflective 
coating [5-7]. Yet, the efficiency of c-Si cells has not increased significantly in the 
last decade. It is, in fact, reaching the Shockley-Queisser limit predicted at 29% 
[8]. The manufacturing cost for a wafer-based Si cell is relatively high and the 
process is complex. A high purity of c-Si is also required to fabricate a working 
solar cell. For these reasons, research effortshave been moving away from c-Si 
cells and concentrating more towards improving thin-film and other emerging PV 
technologies.  

Thin-film solar cells have a similar layered construction and operating 
principle as c-Si cells, except these use a direct bandgap semiconductor rather 
than the indirect bandgap one used in c-Si cells. This allows thin-film materials to 
be made of very thin layers, typically ranging from 1-3 μm. The flexible pairing of 
semiconductor layers is a major advantage of thin-film technologies, where a 
variety of inorganic materials (e.g., amorphous Si, CdTe, CIGS, Cu2O, 
Cu2ZnSnS4) can be tested [9-13]. CdTe and CIGS are currently the best 
perfomance materials, capable of delivering 22% certified efficiency [2]. 

Among the emerging PV technologies, DSSC has been around the longest, 
and is often classified under thin-film cells. The modern form of DSSC is called a 
Grӓtzel cell, named after one of the co-inventors – Michael Grӓtzel. Even though 
the efficiency of DSSCs sits around 11%, these cells have the advantage of 
simpler preparation process, low cost, and flexibility. DSSC can be printed roll-
to-roll and can be made transparent or multi-coloured. These features are 
demonstrated in one of the most fascinating solar material installments, in which 
300 square metres of DSSC cells were used as the building façade on the 
SwissTech convention centre (Figure 2).  

OSC technology bears similar advantages and efficiency as DSSC. The 
construction of OSCs is simpler, with a layer of mixed organic donor-acceptor 
materials sandwiched between two electrodes. Most of the organic materials 
consist of polymer blends such as P3HT and functionalized-C60 PCBM, that are 
relatively cheap and easy to synthesize [14].  
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Figure 2. The SwissTech Convention Center where DSSC were installed as part of the 
building façade. The DSSC cells were made by Solaronix. Photo credit: Solaronix. 

The latest addition to solar tehcnology is the rapidly advancing PSC. Within 4 
years since the first invention by Kojima et al. [15], the efficiency of PSC has 
risen exponentially from 3% to the current 22.1% demonstrated by Michael 
Grӓtzel and Anders Hagfeldt at EPFL [16]. This is a very promising breakthrough 
that has attracted vast attention from researchers in the field. The architecture of 
PSC is an evolution from solid state DSSC [17-18], with the main difference in 
the active material layer. Perovskite has the general formula of ABX3 and the 
most studied example is CH3NH3PbI3. Perovskites not only function as light 
absorbers for electron injection into the TiO2 semiconductor, they also act as 
electron hole carriers [19-21]. The ability to exhibit appealing aspects of both 
inorganic thin-film and organic PV is the key to current success of perovskites 
[22]. Despite all the enormous potential that PSC exhibit, the technology is yet to 
be commercialized due to several crucial drawbacks. Some of these issues include 
stability upon exposure to the UV-Vis region of the spectrum, toxicity of the main 
active element (Pb), sensitivity to moisture, and unreliable device performance 
[22-28]. Researchers remain very optimistic that PSCswill surpass silicon 
technology in the near future, with a prediction of real commercialization of PSC 
modules on the 2019-21 time frame [29]. 

The solar technology sector is certainly competitve in both energy conversion 
efficiency and cost per module. Emerging PV cells are leading with more cost 
effective materials and manufacturing process. In particular, there are still 
countless possibilities of improving DSSC and OSC in terms of active materials 

Complimentary Contributor Copy



Julie L. H. Kho, Margaux Airey and M. Cather Simpson 170 

selection. Finding the right combination of electron donor-acceptor is the key to 
optimizing the cell performance. The donor-acceptor molecules are primarily 
responsible for the first two steps of the aforemention ‘capture, convert, and store’ 
process. In this chapter, we focused upon organic molecules that have been 
designed specifically for this purpose, understanding how energy can be captured 
and converted efficiently into metastable species with opposing charges which 
later recombine.  

ENERGY HARVESTING SYSTEMS IN ORGANIC SOLAR CELLS 

Electron donor-acceptor pairs were first observed in natural photosynthetic 
systems. Plants and photosynthetic bacteria have complex protein architectures 
with light harvesting antennas to absorb sunlight, and a series of enzymes that 
works as an electron transport chain to create a long-lived charge separated state. 
In plants, the process is divided into photosystem I and II where chlorophylls act 
as the light absorber, generating electrons to pass onto the next phases for 
converting ADP to ATP and NADP to NADPH (Figure 3). The quantum yield of 
this process is near unity and the charge-separated species in photosynthetic 
systems last for ~1 s [30-32].  

The goal of biomimetic systems is to achieve the unity quantum yield of 
electron transfer in photosynthesis with simple molecules. To design efficient 
artificial molecules, the selection of a suitable electron donor and acceptor pair is 
vital. The electron donor needs to have a broad absorption spectrum to fully 
utilize the solar radiation across the visible and near-IR. Absorption of the light by 
the donor molecules should not lead to degradation, and is ideally followed by 
fast and efficient electron transfer to the electron acceptor. Subsequently, the 
electron acceptor should have a lower energy level than the donor, with high 
electron affinity, and promotes slow charge recombination.  

There is an extensive list of potential electron donors and acceptors that have 
been designed for different solar cells. In OSC, polymer blends of donor-acceptor 
are primarily used. The donor consists of π-conjugated long chains, and acceptors 
are functionalized fullerenes [33-38]. Polymer blends suffer from low efficiency 
compared to hard materials, and could also undergo photochemical degradation 
[39]. Inorganic molecules such as ruthenium complexes [40-42] and BODIPY 
dyes [43-45] are widely used as sensitizers in DSSC. These complexes are limited 
by their absorption bandwidth in the visible region, and the rare earth metals are 
also costly. Organic molecules are also popular in artificial systems, since their 
chemical properties can be more readily tailored by structural modifications. One 
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of the earliest examples was a pair of chlorophyll dimers, synthesized with similar 
photochemical properties to P700 chlorophyll in plants [46]. Combinations of 
chlorophylls, carotenoids, porphyrins, and phthalocyanine donors were paired up 
with quinone acceptors to demonstrate long-lived, charge-separated states that last 
for microseconds [47-51]. In the following discussion, we focus on one of the 
globally important class of organic donor-acceptor pairs: porphyrins and 
fullerenes.  

 

 

Figure 3. Both the photosynthetic system in plants and DSSC absorb solar energy to create 
a cascade of electron transfer steps forming charge-separated species. 

The employment of porphyrins as electron-donor light-harvesters in the 
design of these organic arrays is particularly attractive due to the primary role of 
porphyrin-type molecules in natural photosynthetic systems. Alongside their 
ability to harvest light within the visible and near-IR region, analogous to 
chlorophylls, their structural malleability is also an important feature for allowing 
the optimisation of electronic properties by chemical modification. Fullerenes are 
especially favourable as electron acceptors in the design of these synthetic 
reaction centres due to their low-energy first excited singlet state, and their 
readiness to accept energy alongside multiple electrons [52]. The particularly 
small reorganisation energies of fullerenes associated with photoinduced electron 
transfer reactions, for example, are attractive for improving the efficiency of 
electron transfer within artificial photosynthetic reaction centres [53]. It is 
responsible for decreasing energy waste, and allows the investigation of rates and 
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yields of charge separation and charge recombination mechanisms. Furthermore, 
these three-dimensional building blocks readily form multiple isomers which 
facilitate the attachment of other molecules [54-55]. 

COVALENTLY BOUND PORPHYRIN-FULLERENE COMPLEXES 

Covalently-bound porphyrin-fullerene systems has been around for a few decades. 
They are a popular synthetic choice to construct polyads (triads, tetrads, pentads, 
etc.) due to the natural attraction of fullerene to the porphyrin macrocycle. Often 
these are tethered using appropriate molecular linkers (e.g., aromatic groups, π-
conjugation) in various structural arrangements, along with peripheral 
substitutions on the porphyrin for one purpose – that is to optimize the electron 
transfer process resulting in a long-lived charge-separated state with high quantum 
yield [56-61]. 

The early design of free-base and zinc porphyrin-fullerenedyads largely 
satisfied the goals of a synthetic light-harvesting system by exhibiting very rapid 
photoinduced electron transfer to produce long-lived charge-separated states and 
quantum yields nearing unity[62-64]. The single-step electron transfer associated 
with a dyad system is based upon two basic processes over a short range. 
Following excitation of the donor or acceptor moiety, the dyad forms a donor 
radical cation and acceptor radical anion pair that subsequently undergoes charge 
recombination before returning to its initial ground state [65]. Employing single-
step electron transfer in a dyad complex was therefore particularly attractive 
because of the reduction in loss of photon input energy that could occur with a 
longer-range multi-step process. However with the resulting intense electronic 
coupling between the radical anion and cation donor-acceptor pair, in many cases 
charge recombination could take place too rapidly to produce the desired 
efficiency of a photosynthetic reaction centre. Despite these disadvantages, the 
selection of donor-acceptor pairs with suitable redox potentials and excitation 
energies has been shown to improve the photochemical properties of dyads [55, 
65-67]. With the goal of extending the lifetime of the charge-separated state while 
minimising the loss of photon input energy, a series of zinc chlorin-C60 dyads 
with short linkages were successfully designed [68-71]. It was predicted based on 
theory that both charge-separation and recombination processes could be 
optimised by decreasing the separation distance between the donor and acceptor 
pair. Nevertheless, despite exhibiting an exceptionally long-lived charge-
separated state, the quantum yield of formation reached only 12% of an ideally-
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estimated 100% [69]. Therefore an approach towards multi-step electron transfer 
in complexes of higher structural hierarchy was made. 

Donor-acceptor systems with higher orders than dyads can undergo multi-step 
electron transfer – an approach that is observed in natural photosynthetic systems 
[65]. Despite its unfavourable loss of input photon energy unseen in single-step 
transfer, in the multi-step process the photoinduced radical ion pair substantially 
reduces the electronic coupling and therefore increases the lifetime of the final 
charge-separated state. This new approach yielded a variety of particularly 
attractive complexes: with the employment of specific porphyrin-fullerene donor-
acceptor pairs for example, the achievement of a long-lived charge-separated state 
with a high quantum yield was made possible [52, 63, 65, 72]. Furthermore, 
increasing the hierarchy of porphyrin-fullerene systems from dyad to heptad 
assemblies [65], an excellent synthetic analogy to photosynthetic systems in 
nature could be achieved. 

In rigid conjugated dendrimer arrays, the excitation of peripheral 
chromophores exhibits an efficient electron transfer process to an electron-
accepting core that quenches the fluorescence of the fringe electron acceptors[57, 
66-67, 73-74]. Moreover, dendrimers allow a multi-step electron transfer process 
that extends the lifetime of the final charge-separated state of the molecule [54, 
65, 75-77]. 

The structural details of porphyrin-fullerene triads and higher order 
complexes play an important role in influencing the rate and efficiency of electron 
transfer from the donor to acceptor moieties. For example, the role played by 
linkages in optimizing electron transfer by reorganisation energy is crucial in the 
balance between efficient charge separation and unfavourable back-electron 
transfer; an effect that can be solved by causing charge-separation to occur in 
multiple short-distance steps by structural design[55, 60, 78-80]. Notably, the 
organisation of the photosynthetic reaction centers vary in nature: for example, 
symmetric macrocyclic structures have been found in purple bacteria 
chlorophylls, whereas rod-like aggregates have been observed in green bacteria 
chlorophylls [81]. 

Moreover, designing a multi-component system with conformationally 
restrained linkages restricts the possible values of electronic coupling between the 
initial excited state and the charge-separated state of the porphyrin and fullerene 
[58, 82]. Thus a macro assembly could be designed a variety of different ways 
with its ultimate photosynthetic properties depending on that structural 
conformation. Generally, these porphyrin-fullerenes have been arranged cyclically 
or linearly. The cyclic arrangement of photoactive molecules has been observed 
for example in particular chlorophyll pairs in bacterial reaction centres, and is 
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therefore one attractive design prospect [82]. Cyclic complexes can be organised 
over a three-dimensional or two-dimensional framework, where the former is 
characterised by a double-bridge covalent bond between two porphyrin moieties 
and a fullerene.  

 

 

Figure 4. a) The structure of a diporphyrin-fullerene triad three-dimensional macrocycle, 
where the two zinc-porphyrins are bridged by a hexaphenylbenzene. b) The space-filling 
model of the same triad. Fullerene is connected via two bonds to each porphyrin moiety. 

Figure reproduced with permission from ACS Publications. 
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The double-bridging three-dimensional macrocycle has been shown to counter 
the rate of undesirable charge recombination while preventing free rotation about 
bonds that would normally occur with a single bond [78, 82]. By preventing this 
movement, the distance between the donor and acceptor, angles, and electronic 
coupling can be restricted. In a 42-atom diporphyrin-fullerene triad macrocycle 
featuring two zinc-porphyrins bridged by a hexaphenylbenzene, both the cyclic and 
doubly-bridged structural features are shown to significantly benefit the electronic 
efficiency of the complex by the strain exacted on the porphyrins (Figure 4). In the 
solvent 2-methyltetrahydrofuran for example, a particularly long-lived charge 
separated state with a decay rate constant of 2.7 ns occurs with a quantum yield of 
1.0. This was matched with a favourably short time constant for electron transfer 
from the first singlet excited state of the porphyrin to the fullerene to generate the 
cation-anion radical pair. Thus compacting the structure of these macromolecules 
into a rigid cyclic conformation satisfies the energetically-favourable face-to-face 
contact required in their design, and limits the effects of solvent reorganisation 
energy by restricting the exposure of the donor and acceptor moieties [83]. These 
combined factors produced a porphyrin-fullerene three-dimensional macrocycle 
with notably superior properties to dyad counterparts [84-85]. 

 

 

Figure 5. The antenna-based structure of a two-dimensional macrocycle.  
Five bis(phenylethynyl)anthracene (BPEA) antennas encircle a central  

hexaphenylbenzene core that is covalently attached to a porphyrin-fullerene pair.  
Figure reproduced with permission from ACS Publications. 

Complimentary Contributor Copy



Julie L. H. Kho, Margaux Airey and M. Cather Simpson 176 

Two-dimensional cyclic arrays with higher structural order also have 
exhibited improved electronic qualities. This is likely due to the antenna-based 
design that imitates the broadened light-harvesting capacity of a natural 
photosynthetic system. With this knowledge, the covalent attachment of five 
bis(phenylethynyl)anthracene (BPEA) antennas arranged around a central 
hexaphenylbenzene core to a porphyrin-fullerene pair has achieved numerous 
favourable properties (Figure 5). Firstly, a highly efficient and rapid singlet 
energy transfer from the antenna periphery to the porphyrin electron acceptor has 
been demonstrated. The structure also impeded a variety of unfavourable 
electronic mechanisms that could interfere with the very decisive charge 
separation and recombination in the donor-acceptor pair[57]. Both a quantum 
yield of near unity and a charge-separated state lifetime exceeding that of the 
diporphyrin-fullerene triad macrocycle above suggests that the antennas play a 
crucial function in the design of these synthetic systems.  

Carotenoid-tethered porphyrin-fullerene molecules have been an attractive 
area of research for the design of linear arrays [77, 86-87]. For example, imitating 
the role of carotenoid polyenes may provide the analogous capacity of broader 
spectral absorption. Following charge recombination of these compounds, the 
carotenoids also exhibit spin-polarised triplet states as well as triplet-triplet energy 
transfer phenomena seen in the photoprotective characteristics of carotenes in 
natural antenna function [77]. Thus the design of carotene-based assemblies has 
been oriented around the unique properties of the carotene moiety. Based on the 
main processes of electron transfer, charge shifts, and triplet-states, it is first 
favourable to yield the initial charged state on a picosecond timescale form 
photoinduced electron transfer. This must be followed by a very rapid charge shift 
to produce the charge-separated state with a quantum yield of near unity, which 
must be subsequently long-lived and recombine to yield the triplet state of the 
carotenoid. Ideally, the resulting triad would exhibit good resistivity to oxidative 
damage, have high solubility in a variety of solvents, and could be synthesised 
with ease. With these existing goals, a carotene-porphyrin-fullerene triad was 
synthesised with properties matching those in nature [88-90]. This compound 
bearing mesityl groups bonded to the porphyrin moiety presented both synthetic 
and chemical advantages, with a more rapid charge recombination to yield the 
carotenoid triplet state in comparison to other linear triads.  

A remarkably long lifetime of a charge-separated state was reported in an 
artificial photosynthetic reaction centre bearing a ferrocene-zinc porphyrin-zinc 
porphyrin-fullerene meso-mesolinkage [56]. This tetrad exhibited an improved 
charge-separated state and quantum yield in comparison to an analogue bearing a 
free-base porphyrin moiety. Generally, the improved excited-state energy and 
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oxidation potential attributed to the use of the zinc porphyrin over the free-
base[91]. It is therefore notable that a pentad with an additional zinc porphyrin in 
the light-harvesting structure produced a charge-separated state that did not match 
the extremely long lifetime of 1.6 s observed in the tetrad, but significantly 
improved its quantum yield from approximately 0.34 to 0.83 [91]. The 
improvements associated with an increase in zinc porphyrins could be due to 
improved exciton coupling in the trimer, but in the case for both the tetrad and 
pentad systems such positive values could only be achieved in frozen media to 
minimise competing mechanisms such as back electron-transfer[75, 91]. 

SELF-ASSEMBLED PORPHYRIN-FULLERENE COMPLEXES 

Compared to the literature published on covalently tethered porphyrin-fullerene 
complexes, much less research is reported for self-assembled systems. The latter 
approach is appealing for several reasons, including simple building blocks that 
avoid complicated synthetic pathways, higher flexibility and free rotation, and 
resemblance to the natural photosynthetic reaction centre’s self-assembled entities 
[92-94].  

Two different types of self-assembled methods have been demonstrated: (1) 
through Van der Waals interactions, and (2) through ‘commanded assembly’. 
Examples of each of the methods will be described in the following section. 
D’Souza, Ito, Imahori, and Guldi are among the few researchers who have 
investigated the coordination of fullerene to porphyrin, particularly on their 
photoinduced electron transfer behaviour to generate long-lived charge-separated 
species [92-93, 95-102].  

Van der Waals Interactions 

Molecular self-assembly between porphyrins and fullerenes is conducted via Van 
der Waals interactions to form various complex arrangements, including: sandwich, 
dendritic, interstice, and nanorods [103-106]. In solution, metal-ligand axial 
coordination is often employed to bind functionalized fullerenes to porphyrins with 
unsaturated metal ion centers such as Zn or Mg [92-93, 95-96, 99, 102, 107]. 
Photoinduced electron transfer has been shown to be successful in coordinated 
complexes, forming the charge-separated species P.+C60.-.An example of a simple 
dyad, Zn-tetraphenylporphyrin (Zn-TPP) axially coordinated with fulleropyrrolidine 
designed by D’Souza et. al exhibits a charge-separated lifetime of 1.1 ns [95].  
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Higher order complexes that self-assemble are often more challenging to 
design and synthesize due to space restrictions. With axial ligation, a maximum of 
two fullerenes can coordinate to the porphyrin face to form triads. Following the 
first successful axial ligation of a porphyrin and a fullerene, D’Souza created a 
triad using a ‘two-point’ axial binding approach, in which a covalently linked 
dimer, Zn-porphyrin-Zn-phthalocyanine (ZnP-ZnPc) was coordinated to 
fulleropyrrolidine [108]. After photoexcitation, energy transfer from ZnP to ZnPc 
was initially observed, followed by the formation of a charge-separated state ZnP-
ZnPc.+-C60.-that lasted for 1.7 ns. From this result, the triad complex did not show 
a significant increase in lifetime compared to the previous dyad.  

Cyclic dimers of porphyrins also have been employed to facilitate non-
covalent binding of fullerenes [109-112]. Pristine fullerenes can be encapsulated 
within the cyclic porphyrin cage via π-π interaction. Aida and co-workers first 
reported the effects of various metalloporphyins (Co, Ni, Cu, Ag, Zn, Rh) on the 
binding affinity for fullerenes in the cyclic dimers and found anomalously high 
binding constants when using rhodium ions in porphyrins [113]. This result led to 
further studies using more complex structures of cyclic porphyrin dimers for 
binding fullerenes [112, 114-116]. On the other hand, Fukuzumi’s group 
investigated the use of Lithium-ion encapsulated fullerene (Li+@C60) in cyclic 
dimers [105, 117]. The binding constant for Li+@C60in cyclic porphyrin dimers 
have been reported to be higher than pristine C60thanks to the higher electron 
affinity of Li+@C60. Photoinduced electron transfer studies of this supramolecular 
complex yielded one of longest lived non-covalent porphyrin-fullerene charge-
separated state of 0.6 ms at the time. This promising result was attributed to the 
lower charge-separated energies of the complex compared to the triplet energy of 
both the cyclic porphyrin and Li+@C60.  

In recent years, Fukuzumi has continued to explore the combination of cyclic 
porphyrin dimers and Li+@C60as electron donor-acceptor pairs. Structural 
modifications were made to the linkage between the porphyrin dimers to increase 
their binding affinity to fullerenes, and the widely employed electron acceptors in 
organic PV, PCBM and C60 were used [118-119]. The result satisfyingly yielded 
an even longer charge-separated state of 0.71 ms (Figure 6).  

Acyclic porphyrin hosts for binding fullerene emerged in early 2000, 
around the same time as did cyclic porphyrins. Boyd et al. first prepared a 
palladium-linked, metallated porphyrins that acted as “jaws” to trap the 
fullerene [120-121]. Successful complexation of the “jaws” porphyrins with C60-

and with C70 was demonstrated. Subsequently, a new porphyrin linkage, a 
calix[4]-arene scaffold, was synthesized to improve the binding affinity of the 
porphyrin pair to fullerenes [122]. The charge transfer mechanism of the 
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calixarene-linked Zn-bisporphyrin jaws with C60 was investigated using 
transient absorption spectroscopy. Charge-separated state lifetime of the dyad 
was 0.5 ns in a non-polar medium, toluene [123].  

 

 

Figure 6. Cyclic porphyrin dimer with phenothiazine linkers self-assembled with C60 
designed and characterized by Fukuzumi et al. The charge-separated state lifetime of this 

complex was one of the longest reported for non-covalent systems. Figure reproduced with 
permission from ACS Publications. 

Following that, Boyd and co-workers designed a fully self-assembled triad, 
with a ferrocene pyridine entity coordinated to each of the Zn-porphryin core 
(Figure 7). Upon photoexcitation, electron transfer occurred from the singlet 
porphyrin to the C60to create a radical ion pair ZnP.+-C60.-with lifetime of 1.2 ns. 
Ideally, a secondary electron transfer would create a hole shift from ZnP.+ to Fc.+. 

However, this stepwise electron transfer was not evident from the transient 
absorption lifetime measurement result [124].  

To synthesize more complex porphyrin structures for self-assembly with 
fullerenes, “click chemistry” has been employed as a synthetic technique by 
several groups [125-127].“Click chemistry” is a cycloaddition process often used 
to create elaborate 3D nanostructures of the porphyrin hosts [128]. Such systems 
often possess complex donor-acceptor architectures that could promote multi-
cascade electron transfer. Obviously, the major drawback is the complexity in 
synthesizing pieces of compatible molecules so that they “click” together [129]. 
One particularly interesting example by Takaiet al. is a novel Zn-porphyrin tripod 
synthesized via this pathway [126].A fullerene derivative with pyridine moiety 
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was assembled within the Zn-porphyrin tripod via π-π interaction as well as 
coordination between the pyridine and Zn2+. This strong electron donor-acceptor 
complex exhibited a charge-separated state lifetime of 0.53 ns in toluene.  

 

 

Figure 7. Self-assembled ferrocene-porphyrin-fullerene triad by Boyd et al. Transient 
absorption studies evaluated the charge-separated species formed lasted for 1.2 ns in 
cyclohexane. Evidence of hole shift from porphyrin to ferrocene was not observed. 

Commanded Assembly for Device Fabrication 

On the aspect of device fabrication, commanded assembly via an external stimuli 
has emerged as a new strategy to gain control over the arrangement of functional 
units. The stimuli can be conducted through either electrostatic interactions, 
magnetic fields, or mechanical flows [128]. Multilayers of materials can be 
formed by this bottom-up fabrication technique using electrochemical coupling, to 
assemble alternating positively and negatively charged materials in sequence 
[130-132]. Commanded assembly is also useful in terms of creating area-selective 
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patterns, by varying the spatial application of voltage across the surface[133]. The 
major advantage of this technique is the precision and control of the functional 
units. It is predicted that the research focus on self-assembly of molecules will 
preferentially shift to commanded assembly in the coming years, as the technique 
develops into a more practically useful technology.  

CONCLUSION AND OUTLOOK 

Incorporating porphyrin-fullerene light-harvesting units into photovoltaic devices is 
the next important step towards exploiting their energetic properties. Organic 
photovoltaic devices have not achieved a comparable level of efficiency as 
photosynthetic systems yet, but a step-by-step approach to their design may provide 
key information to their improvement in the future. In particular, the internal 
quantum yield of photocurrent generation serves as an important marker for 
electrode capability. The most practical method of incorporating porphyrin-fullerene 
complexes onto electrode surfaces is by self-assembled monolayers (SAMs), where 
the presence of an additional functional molecule such as thiols or disulfides on 
these compounds allows the tethering of the layers onto a gold surface[81]. 
Assembling these light-harvesting monolayers onto a gold surface has been a 
particularly attractive prospect for a variety of reasons. For example, the fullerene 
plays an important role in allowing the acceleration of the forward electron transfer 
and the deceleration of charge-recombination, producing a high quantum yield of 
photocurrent generation on the gold surface that largely quenches the porphyrin 
singlet excited state. In the case of a dyad monolayer assembly, a distinct 
improvement photocurrent generation from zinc porphyrin-to free-base-fullerenes 
was observed thanks to the increased quantum yield of the charge-separated state 
from the former to the latter. In comparison with ferrocene-porphyrin-fullerene 
triads with alkanethiols, optimal conditions yielded an equal improvement from the 
zinc to free-base analogue (from 20% to 25% efficiency). It is noted that the 
presence of the ferrocenium cation also plays an important role, where the electron 
transfer rate from the gold surface to the cation increases when the potential applied 
is decreased, thus overall increasing the photocurrent of the system. 

Significant improvements also have been seen by a different approach: 
incorporating an additional light-harvesting chromophore alongside the porphyrin-
fullerene compounds to add a singlet-singlet energy transfer step. A boron-dipyrrin 
dye was chosen for this purpose, motivated in part by its favourable absorption that 
extends the overall absorption range of the entire system with particular emphasis in 
the blue and green region. The efficient singlet-singlet energy transfer directly from 
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the dipyrrin to the porphyrin moiety of a ferrocene-porphyrin-fullerene alkanethiol 
triad tethered to a gold surface helped improve the photocurrent generation, likely 
assisted by a single-step to multi-step transfer mechanism. With the free-base 
porphyrin analogue, a photocurrent efficiency 30 times greater than that of a device 
bearing only the boron-dipyrrin unit was observed. Despite the very high quantum 
yield achieved by SAM systems on metal electrodes, achieving natural 
photosynthetic efficiencies of almost 100% has been hindered by the potent 
quenching effect of the porphyrin singlet excited state by gold surfaces. Thus the 
high optical transparency and electrical conductivity of ITOs provide the next step 
to designing photosynthetic electrodes, with a predicted internal quantum yield of 
280 times larger than respective porphyrin SAM gold electrodes. The problem with 
ITOs however has been the difficulties associated with attaching SAMs onto their 
surface, and as a result only single chromophores have been successfully linked. 
Furthermore, despite improved internal quantum yields of photocurrent generation, 
the light-harvesting capacities of these systems still behave poorly with low values 
of incident photon-to-photocurrent efficiency attributed to the monolayer.  

Based on a successful approach towards improving light-harvesting 
efficiency, dyad clusters of porphyrin-fullerenes were deposited by 
electrophoresis onto a nanostructured SnO2 electrode [134-136]. This showed 
significant improvement over the monolayer system, but low external quantum 
yield values were attributed to the cancellation of the charge-separated state in the 
porphyrin-fullerene dyad clusters. In an attempt to improve the absorbance of the 
system by enhancing charge-transfer type interactions between molecules, larger 
composite porphyrin-fullerene clusters were assembled via primary organisation 
before electrodeposition onto the SnO2 surface. Likewise, these provided 
enhanced photocurrent generation, encouraging the design of quarternary self-
organised porphyrin-fullerene-gold nanoparticle clusters for incorporation onto an 
SnO2 electrode[137]. From these electrode designs, it was found that the three-
dimensional network of the porphyrin dyes was directly responsible for the 
improvements seen in photoelectrochemical properties by facilitating the injection 
of the parted electron into the conduction band.  

In DSSC, porphyrin-fullerene sensitizers have been incorporated for 
performance testing [138-139]. The overall power-conversion efficiency of the 
cells remains less than 10%; much lower than existing inorganic solar cells which 
have reached up to 25% in practical efficiency. Although the development of 
organic complexes in solar harvesting is slower compared to the rise of other 
technology such as perovskites, there is still a positive outlook for future 
breakthroughs. Even so, a commercial market currently exists for organic PV. 
They might not be efficient enough to provide electricity in a household yet, but 
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they are extremely useful in portable consumer products such as watches, remote 
control, phone charger, clothing and sensors [140-141]. These applications require 
the flexibility and low-cost that organic PV offers. Of course, the most powerful 
advantage of organic solar harvesting complexes is their potential to be 
chemically tuned, with virtually unlimited possibilities for achieving desirable 
properties. Finally, with the amount of research directed towards numerous 
promising solutions to the pressing renewable energy problem, it would be wise 
not to close doors on an outcome bearing at least one viable technology for 
widespread use. 
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