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Solid state physics is the study of mainly periodic systems (or things

that are close to periodic) in the thermodynamic limit≈ 1021 atoms/cm3.

At first this would appear to be a hopeless task, to solve such a large

system.

Figure 1: The simplest model of a solid is a periodic array of valance orbitals embedded

in a matrix of atomic cores.

However, the self-similar, translationally invariant nature of the pe-

riodic solid and the fact that the core electrons are very tightly bound

at each site (so we may ignore their dynamics) makes approximate so-

lutions possible. Thus, the simplest model of a solid is a periodic array

of valance orbitals embedded in a matrix of atomic cores. Solving the

problem in one of the irreducible elements of the periodic solid (cf. one

of the spheres in Fig. 1), is often equivalent to solving the whole sys-

tem. For this reason we must study the periodicity and the mechanism

(chemical bonding) which binds the lattice into a periodic structure.

The latter is the emphasis of this chapter.
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1 The development of Bands and their filling

nl elemental solid

1s H,He

2s Li,Be

2p B→Ne

3s Na,Mg

3p Al→Ar

4s K,Ca

3d transition metals Sc→Zn

4p Ga→Kr

5s Rb,Sr

4d transition metals Y→Cd

5p In-Xe

6s Cs,Ba

4f Rare Earths (Lanthanides) Ce→Lu

5d Transition metals La→Hg

6p Tl→Rn

Table 1: Orbital filling scheme for the first few atomic orbitals

We will imagine that each atom (cf. one of the spheres in Fig. 1)

is composed of Hydrogenic orbitals which we describe by a screened
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Coulomb potential

V (r) =
−Znle2

r
(1)

where Znl describes the effective charge seen by each electron (in prin-

ciple, it will then be a function of n and l). As electrons are added to

the solid, they then fill up the one-electron states 1s 2s 3s 3p 3d 4s 4p

4d 4f· · ·, where the correspondence between spdf and l is s → l = 0,

p→ l = 1, etc. The elemental solids are then made up by filling these

orbitals systematically (as shown in Table 1) starting with the lowest

energy states (where Enl = me4Z2
nl

2h̄2n2

Note that for large n, the orbitals do not fill up simply as a func-

tion of n as we would expect from a simple Hydrogenic model with

En = mZ2e4

2h̄2n2 (with all electrons seeing the same nuclear charge Z). For

example, the 5s orbitals fill before the 4d! This is because the situation

is complicated by atomic screening. I.e. s-electrons can sample the core

and so are not very well screened whereas d and f states face the an-

gular momentum barrier which keeps them away from the atomic core

so that they feel a potential that is screened by the electrons of smaller

n and l. To put is another way, the effective Z5s is larger than Z4d. A

schematic atomic level structure, accounting for screening, is shown in

Fig. 2.

Now let’s consider the process of constructing a periodic solid. The

simplest model of a solid is a periodic array of valence orbitals embed-

ded in a matrix of atomic cores (Fig. 1). As a simple model of how
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Figure 2: Level crossings due to atomic screening. The potential felt by states with

large l are screened since they cannot access the nucleus. Thus, orbitals of different

principle quantum numbers can be close in energy. I.e., in elemental Ce, (4f 15d16s2)

both the 5d and 4f orbitals may be considered to be in the valence shell, and form

metallic bands. However, the 5d orbitals are much larger and of higher symmetry than

the 4f ones. Thus, electrons tend to hybridize (move on or off) with the 5d orbitals

more effectively. The Coulomb repulsion between electrons on the same 4f orbital will

be strong, so these electrons on these orbitals tend to form magnetic moments.

the eigenstates of the individual atoms are modified when brought to-

gether to form a solid, consider a pair of isolated orbitals. If they are far

apart, each orbital has a Hamiltonian H0 = εn, where n is the orbital

occupancy and we have ignored the effects of electronic correlations

(which would contribute terms proportional to n↑n↓). If we bring them

together so that they can exchange electrons, i.e. hybridize, then the

degeneracy of the two orbitals is lifted. Suppose the system can gain
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Figure 3: Two isolated orbitals. If they are far apart, each has a Hamiltonian H0 = εn,

where n is the orbital occupancy.

Figure 4: Two orbitals close enough to gain energy by hybridization. The hybridization

lifts the degeneracy of the orbitals, creating bonding and antibonding states.

an amount of energy t by moving the electrons from site to site (Our

conclusions will not depend upon the sign of t. We will see that t is

proportional to the overlap of the atomic orbitals). Then

H = ε(n1 + n2)− t(c†1c2 + c†2c1) . (2)

where c1 (c†1) destroys (creates) an electron on orbital 1. If we rewrite

this in matrix form

H =
(
c†1, c

†
2

)



ε −t
−t ε






c1

c2


 (3)

then it is apparent that system has eigenenergies ε ± t. Thus the two

states split their degeneracy, the splitting is proportional to |t|, and

they remain centered at ε
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If we continue this process of bringing in more isolated orbitals into

the region where they can hybridize with the others, then a band of

states is formed, again with width proportional to t, and centered

around ε (cf. Fig. 5). This, of course, is an oversimplification. Real

+ ++ + . . . = Band

E

Figure 5: If we bring many orbitals into proximity so that they may exchange electrons

(hybridize), then a band is formed centered around the location of the isolated orbital,

and with width proportional to the strength of the hybridization

.

solids are composed of elements with multiple orbitals that produce

multiple bonds. Now imagine what happens if we have several orbitals

on each site (ie s,p, etc.), as we reduce the separation between the

orbitals and increase their overlap, these bonds increase in width and

may eventually overlap, forming bands.

The valance orbitals, which generally have a greater spatial extent,

will overlap more so their bands will broaden more. Of course, even-

tually we will stop gaining energy (t̃) from bringing the atoms closer

together, due to overlap of the cores. Once we have reached the optimal
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point we fill the states 2 particles per, until we run out of electrons.

Electronic correlations complicate this simple picture of band forma-

tion since they tend to try to keep the orbitals from being multiply

occupied.

2 Different Types of Bonds

These complications aside, the overlap of the orbitals is bonding. The

type of bonding is determined to a large degree by the amount of over-

lap. Three different general categories of bonds form in solids (cf. Ta-

ble 2).

Bond Overlap Lattice constituents

Ionic very small (< a) closest unfrustrated dissimilar

packing

Covalent small (∼ a) determined by the similar

structure of the orbitals

Metallic very large (À a) closest packed unfilled valence

orbitals

Table 2: The type of bond that forms between two orbitals is dictated largely by the

amount that these orbitals overlap relative to their separation a.
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2.1 Covalent Bonding

Covalent bonding is distinguished as being orientationally sensitive. It

is also short ranged so that the interaction between nearest neighbors is

of prime importance and that between more distant neighbors is often

neglected. It is therefore possible to describe many of its properties

using the chemistry of the constituent molecules.

Consider a simple diatomic molecule O2 with a single electron and

H = −∇
2

2m
− Ze2

ra
− Ze2

rb
+
Z2e2

R
(4)

We will search for a variational solution to the the problem of the

molecule (HΨmol = EΨmol), by constructing a variational wavefunction

from the atomic orbitals ψa and ψb. Consider the variational molecular

wavefunction

Ψ′ = caψa + cbψb (5)

E ′ =
∫

Ψ′∗HΨ′
∫

Ψ′∗Ψ′
≥ E (6)

The best Ψ′ is that which minimizes E ′. We now define the quantum

integrals

S =
∫
ψ∗aψb Haa = Hbb =

∫
ψ∗aHψa Hab =

∫
ψ∗aHψb . (7)

Note that 1 > Sr > 0, and that Habr < 0 since ψa and ψb are bound

states [where Sr = ReS and Habr = ReHab]b. With these definitions,

E ′ =
(c2
a + c2

b)Haa + 2cacbHabr

c2
a + c2

b + 2cacbSr
(8)
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and we search for an extremum ∂E′

∂ca
= ∂E′

∂cb
= 0. From the first condition,∂E

′

∂ca
=

0 and after some simplification, and re-substitution of E ′ into the above

equation, we get the condition

ca(Haa − E ′) + cb(Habr − E ′Sr) = 0 (9)

The second condition, ∂E′

∂cb
= 0, gives

ca(Habr − E ′S) + cb(Haa − E ′) = 0 . (10)

Together, these form a set of secular equations, with eigenvalues

E ′ =
Haa ±Habr

1± Sr
. (11)

Remember, Habr < 0, so the lowest energy state is the + state. If we

substitute Eq. 10 into Eqs. 8 and 9, we find that the + state corresponds

to the eigenvector ca = cb = 1/
√

2; i.e. it is the bonding state.

Ψ′bonding =
1√
2

(ψa + ψb) E ′bonding =
Haa +Habr

1 + Sr
. (12)

For the −, or antibonding state, ca = −cb = 1/
√

2. Thus, in the bond-

ing state, the wavefunctions add between the atoms, which corresponds

to a build-up of charge between the oxygen molecules (cf. Fig. 6). In the

antibonding state, there is a deficiency of charge between the molecules.

Energetically the bonding state is lower and if there are two elec-

trons, both will occupy the lower state (ie., the molecule gains energy

by bonding in a singlet spin configuration!). Energy is lost if there are

more electrons which must fill the antibonding states. Thus the covalent
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r
a r

b
R

Ze Ze

e

Ψ
bonding

Ψ
anti-bonding

spin singlet

spin triplet

Figure 6: Two oxygen ions, each with charge Ze, bind and electron with charge e.

The electron, which is bound in the oxygen valence orbitals will form a covalent bond

between the oxygens

bond is only effective with partially occupied single-atomic orbitals. If

the orbitals are full, then the energy loss of occupying the antibonding

states would counteract the gain of the occupying the bonding state

and no bond (conventional) would occur. Of course, in reality it is

much worse than this since electronic correlation energies would also

increase.

The pile-up of charge which is inherent to the covalent bond is im-

portant for the lattice symmetry. The reason is that the covalent bond

is sensitive to the orientation of the orbitals. For example, as shown in

Fig. 7 an S and a Pσ orbital can bond if both are in the same plane;
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whereas an S and a Pπ orbital cannot. I.e., covalent bonds are di-

rectional! An excellent example of this is diamond (C) in which the

S Pπ
+

-
S

σP
+ -

No bonding Bonding

Figure 7: A bond between an S and a P orbital can only happen if the P-orbital is

oriented with either its plus or minus lobe closer to the S-orbital. I.e., covalent bonds

are directional!

(tetragonal) lattice structure is dictated by bond symmetry. However

at first sight one might assume that C with a 1s22s22p2 configuration

could form only 2-bonds with the two electrons in the partially filled

p-shell. However, significant energy is gained from bonding, and 2s and

2p are close in energy (cf. Fig. 2) so that sufficient energy is gained

from the bond to promote one of the 2s electrons. A linear combination

of the 2s 2px, 2py and 2pz orbitals form a sp3 hybridized state, and C

often forms structures (diamond) with tetragonal symmetry.

Another example occurs most often in transition metals where the

d-orbitals try to form covalent bonds (the larger s-orbitals usually form

metallic bonds as described later in this chapter). For example, consider

a set of d-orbitals in a metal with a face-centered cubic (fcc) structure,
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as shown in Fig. 8. The xy, xz, and yz orbitals all face towards a

neighboring site, and can thus form bonds with these sites; however, the

x2−y2 and 3z2−r2 orbitals do not point towards neighboring sites and

therefore do not participate in bonding. If the metal had a simple cubic

structure, the situation would be reversed and the x2− y2 and 3z2− r2

orbitals, but not the xy, xz, and yz orbitals, would participate much

in the bonding. Since energy is gained from bonding, this energetically

favors an fcc lattice in the transition metals (although this may not be

the dominant factor determining lattice structure).

x

y
z
dxz dxy dyz

x

y
z

x

y
z

x

y
z

x

y
z

dx - y2   2 d3z - r  2   2

Face Centered
Cubic Structure

Figure 8: In the fcc structure, the xy, xz, and yz orbitals all face towards a neighboring

site, and can thus form bonds with these sites; however, the x2−y2 and 3z2−r2 orbitals

do not point towards neighboring sites and therefore do not participate in bonding

One can also form covalent bonds from dissimilar atoms, but these

will also have some ionic character, since the bonding electron will no
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longer be shared equally by the bonding atoms.

2.2 Ionic Bonding

The ionic bond occurs by charge transfer between dissimilar atoms

which initially have open electronic shells and closed shells afterwards.

Bonding then occurs by Coulombic attraction between the ions. The

energy of this attraction is called the cohesive energy. This, when added

to the ionization energies yields the energy released when the solid is

formed from separated neutral atoms (cf. Fig. 9). The cohesive energy

is determined roughly by the ionic radii of the elements. For example,

for NaCl

Ecohesive =
e2

ao

ao
rNa + rCl

= 5.19eV . (13)

Note that this does not agree with the experimental figure given in

the caption of Fig. 9. This is due to uncertainties in the definitions of

the ionic radii, and to oversimplification of the model. However, such

calculations are often sufficient to determine the energy of the ionic

structure (see below). Clearly, ionic solids are insulators since such a

large amount of energy ∼ 10eV is required for an electron to move

freely.

The crystal structure in ionic crystals is determined by balancing

the needs of keeping the unlike charges close while keeping like charges

apart. For systems with like ionic radii (i.e. CsCl, rCs ≈ 1.60
◦
A, rCl ≈

1.81
◦
A) this means the crystal structure will be the closest unfrustrated
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+
e-

Na+Na

Cl +
e-

Cl-

Na+ Cl-+ Na+ Cl- + 7.9 eV

+ 3.61 eV

+ 5.14 eV

r

r

Cl

Na

= 1.81

= 0.97

Figure 9: The energy per molecule of a crystal of sodium chloride is (7.9-

5.1+3.6) eV=6.4eV lower than the energy of the separated neutral atoms. The cohe-

sive energy with respect to separated ions is 7.9eV per molecular unit. All values on

the figure are experimental. This figure is from Kittel.

packing. Since the face-centered cubic (fcc) structure is frustrated (like

charges would be nearest neighbors), this means a body-centered cubic

(bcc) structure is favored for systems with like ionic radii (see Fig. 10).

For systems with dissimilar radii like NaCl (cf. Fig. 9), a simple cubic

structure is favored. This is because the larger Cl atoms requires more

room. If the cores approach closer than their ionic radii, then since

they are filled cores, a covalent bond including both bonding and anti-
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bonding states would form. As discussed before, Coulomb repulsion

makes this energetically unfavorable.

Cubic Body Centered 
Cubic

Face Centered
Cubic

a
b

c

a
b

c

Na

Cl

Cs

Cl

Figure 10: Possible salt lattice structures. In the simple cubic and bcc lattices all the

nearest neighbors are of a different species than the element on the site. These ionic

lattices are unfrustrated. However, it not possible to make an unfrustrated fcc lattice

using like amounts of each element.

2.2.1 Madelung Sums

This repulsive contribution to the total energy requires a fully-quantum

calculation. However, the attractive Coulombic contribution may be

easily calculated, and the repulsive potential modeled by a power-law.

Thus, the potential between any two sites i and j, is approximated by

φij = ± e
2

rij
+
B

rnij
(14)

where the first term describes the Coulombic interaction and the plus

(minus) sign is for the potential between similar (dissimilar) elements.

The second term heuristically describes the repulsion due to the over-
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lap of the electronic clouds, and contains two free parameters n and B

(Kittel, pp. 66–71, approximates this heuristic term with an exponen-

tial, B exp (−rij/ρ), also with two free parameters). These are usually

determined from fits to experiment. If a is the separation of nearest

neighbors, rij = apij, and their are N sites in the system, then the total

potential energy may be written as

Φ = NΦi = N


−e

2

a

∑

i6=j

±
pij

+
B

an
∑

i6=j

1

pnij


 . (15)

The quantity A =
∑
i6=j

±
pij

, is known as the Madelung constant. A

depends upon the type of lattice only (not its size). For example

ANaCl = 1.748, and ACsCl = 1.763. Due to the short range of the

potential 1/pn, the second term may be approximated by its nearest

neighbor sum.

2.3 Metallic Bonding

Metallic bonding is characterized by at least some long ranged and non-

directional bonds (typically between s orbitals), closest packed lattice

structures and partially filled valence bands. From the first character-

istic, we expect some of the valance orbitals to encompass many other

lattice sites, as discussed in Fig. 11. Thus, metallic bonds lack the

directional sensitivity of the covalent bonds and form non-directional

bonds and closest packed lattice structures determined by an optimal

filling of space. In addition, since the bands are composed of partially
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3d x  - y 2     2

4S

Figure 11: In metallic Ni (fcc, 3d84s2), the 4s and 3d bands (orbitals) are almost

degenerate (cf. Fig. 2) and thus, both participate in the bonding. However, the 4s

orbitals are so large compared to the 3d orbitals that they encompass many other

lattice sites, forming non-directional bonds. In addition, they hybridize weakly with

the d-orbitals (the different symmetries of the orbitals causes their overlap to almost

cancel) which in turn hybridize weakly with each other. Thus, whereas the s orbitals

form a broad metallic band, the d orbitals form a narrow one.

filled orbitals, it is always possible to supply a small external electric

field and move the valence electrons through the lattice. Thus, metal-

lic bonding leads to a relatively high electronic conductivity. In the

transition metals (Ca, Sr, Ba) the d-band is narrow, but the s and p

bonds are extensive and result in conduction. Partially filled bands can

occur by bond overlap too; ie., in Be and Mg since here the full S bonds

overlap with the empty p-bands.
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2.4 Van der Waals Bonds

As a final subject involving bonds, consider solids formed of Noble gases

or composed of molecules with saturated orbitals. Here, of course, there

is neither an ionic nor covalent bonding possibility. Furthermore, if the

charge distributions on the atoms were rigid, then the interaction be-

tween atoms would be zero, because the electrostatic potential of a

spherical distribution of electronic charge is canceled outside a neutral

atom by the electrostatic potential of the charge on the nucleus. Bond-

ing can result from small quantum fluctuations in the charge which

induce electric dipole moments.

P1 P2

n

+ - +-

x
1

R x
2

Figure 12: Noble gasses and molecules with saturated orbitals can form short ranged

van der Waals bonds by inducing fluctuating electric dipole moments in each other.

This may be modeled by two harmonic oscillators binding a positive and negative

charge each.

As shown in Fig. 12 we can model the constituents as either induced

dipoles, or more correctly, dipoles formed of harmonic oscillators. Sup-
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pose a quantum fluctuation on 1 induces a dipole moment p1. Then

dipole 1 exerts a field

E1 =
3n(p1 · n)− p1

r3
(16)

which is felt by 2, which in turn induces a dipole moment p2 ∝ E1 ∝
1/r3. This in turn, generates a dipole field E2 felt by 1 ∝ p2/r

3 ∝ 1/r6.

Thus, the energy of the interaction is very small and short ranged.

W = −p1 · E2 ∝ 1/r6 (17)

2.4.1 Van der Waals-London Interaction

Of course, a more proper treatment of the van der Waals interaction

should account for quantum effects in induced dipoles modeled as har-

monic oscillators (here we follow Kittel).

As a model we consider two identical linear harmonic oscillators 1

and 2 separated by R. Each oscillator bears charges ±e with separations

x1 and x2, as shown in Fig. 12. The particles oscillate along the x axis

with frequency ω0 (the strongest optical absorption line of the atom),

and momenta P1 and P2. If we ignore the interaction between the

charges (other than the self-interaction between the dipole’s charges

which is accounted for in the harmonic oscillator potentials), then the

Hamiltonian of the system is

H0 =
P 2

1 + P 2
2

2m
+

1

2
mω2

0(x2
1 + x2

2) . (18)
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If we approximate each pair of charges as point dipoles, then they

interact with a Hamiltonian

H1 ≈
−3(p2 · n)(p1 · n) + p1 · p2

|x1 + R− x2|3
= −−2p1p2

R3
= −2e2x1x2

R3
. (19)

The total Hamiltonian H0 +H1 can be diagonalized a normal mode

transformation that isolates the the symmetric mode (where both os-

cillators move together) from the antisymmetric one where they move

in opposition

xs = (x1 + x2)/
√

2 xa = (x1 − x2)/
√

2 (20)

Ps = (P1 + P2)/
√

2 Pa = (P1 − P2)/
√

2 (21)

After these substitutions, the total Hamiltonian becomes

H =
P 2
s + P 2

a

2m
+

1

2


mω2

0 −
2e2

R3


x2

s +
1

2


mω2

0 +
2e2

R3


x2

a (22)

The new eigenfrequencies of these two modes are then

ωs =


ω2

0 −
2e2

mR3




1/2

ωa =


ω2

0 +
2e2

mR3




1/2

(23)

The zero point energy of the system is now

E0 =
1

2
h̄(ωs + ωa) ≈ h̄ω0


1− 1

4


 2e2

mω2
0R

3




2

+ · · ·

 (24)

or, the zero point energy is lowered by the dipole interaction by an

amount

∆U ≈ h̄ω0

4


 2e2

mω2
0R

3




2

(25)
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which is typically a small fraction of an electron volt.

This is called the Van der Waals interaction, known also as the

London interaction or the induced dipole-dipole interaction. It is the

principal attractive interaction in crystals of inert gases and also in

crystals of many organic molecules. The interaction is a quantum effect,

in the sense that ∆U → 0 as h̄→ 0.
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