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General Comments 

Chapters are divided into sections, for example 51.3, which are usu- 

ally partitioned into subsections, 5 1.3.2, which are, in turn, occasionally 

divided into further subsections, 51.3.2b. Tables and Figures are num- 

bered sequentially through each chapter as Fig. 1-1, Fig. 1-2, ...; however, 

within a chapter the chapter number is suppressed, e.g., Fig. 1, Fig. 2, .... 

Equations are numbered sequentially through each sections, e .g., ( I), 

(2), ...; however, when referring to an equation in another section, the sec- 

tion n m b e r  is included, e.g., (1.3-11, ! 1 -3-2), . . .. Pages are numbered 

sequentially for each chapter. Most chapters and some sections start 

with a summary of the major points. 
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Summary: 

It is assumed that all students reading this material have had some 

course (e-g., the traditional semester of a junior-level physical chemistry 

course) presenting the basic elements of quantum mechanics with some 

treatment of the hydrogen atom, the harmonic oscillator, and angular 

momentum. This course will concentrate on the explanation of the struc- 

ture and reactivity of molecules using quantum mechanical ideas. The 

explanations will stress qualitative and semi-quantitative considerations 

with the emphasis on developing pr inc ip les  (based on quantum mechan- 

ics) that can be used to make reliable p ~ e d i c t i o n s  o n  n e w  s y s t e m s  

(rather than merely rationalize known results). 

Chapter 1 is a review of materals that all students should have had 

previously, but with an emphasis on those points that will be important 

later in the course. 

The basic principles of quantum mechanics are summarized in 5 1.1. 

A key idea here is that in, the classical  d e s c e p t i o n  of an atom, the elec- 

t r o n  wou ld  coLlapse in to  the nucleus. The critical difference with the 

quantum description is that the kinetic energy is proportional to the 

average value of the square of the gradient of the wavefunction, T = 

)$ < lVp 1 2 > > .  Consequently, for an electron sitting on the nucleus, the 

kinetic energy is infinite (since Vp is infinite). This forces the electron to 

remain distributed over a finite region surrounding the nucleus and 

prevents the collapse of the electron into the nucleus. Thus the q u a n t u m  

d e s c h p t i o n  is essent ial  f o r  stability of a toms .  We will find in later 

chapters that modifications in the khetic energy (due to superposition of 

orbitals) also plays the key role in the formation of chemical bonds. 



Throughout t h s  course we will be searching for qualitative ideas con- 

cerning the sizes and shapes of wavefunctions and for simple ways of 

predicting the energy ordering of the states of a system. A useful con- 

cept here is the nodal theorem described in 51.3. Basically, this theorem 

tells us that the ground state of a system is everywhere positive [no nodal 

planes (zeros) interior to the boundaries of the system]. 



5 1.1 BASIC PRINCIPLES OF QUANTUM lKECHANICS 

In the following section we hghlight the basic concepts of quantum 

mechanics relevant for t h s  course. All of these ideas should be familiar 

to you; good references for reviewing these topics and for outside reading 

during the first part of Ch 120a are: 

I. N. Levine, Quantum Chemistry (Allyn and Bacon, Boston, 1974), 

Second Edition. 

H. Eyring, J. Walter, and G. W. Kirnball (Em) ,  Quuntum Chemistry 

(Wiley and Sons, New York, 1944). 

5 1.1.1 The Need for Quantum Mechanics 

In order to see why quantum mechanics is so important to chemis- 

try, let's examine the classical mechanical description of the hydrogen 

atom 

R 
t C  - m -7. 

.It' electron 

proton 

q~ = +e 

The total energy is given by 

where the kinetic energy is* 

* Actually, the total kinetic energy of the hydrogen atom has two terms, 

However, considering the case where there is no net motion (i.e., no net inertia or 
momentum) leads to 

pp + Pe = 0 

and hence (ppI2 = be)', so that (3)  becomes 



where m, v, and p are the mass, velocity, and momentum of the electron, 

and the potential energy is 

where q, = -e and q, = +e and the charge of the electron and proton and r 

is the distance between them. 

The ground state is when the system has its lowest possible total 

energy. Any other state (higher energy) is referred to as an excited state.  

Generally, systems in excited states will eventually decay to lower energy 

states,? and we will be interested in the stable (ground) states. The 

lowest kinetic energy occurs for p = 0, leading to T = 0, while the lowest 

potential energy occurs for r = 0, leading to V = --. Thus, in the classical 

description, the ground state of the hydrogen atom has the electron 

standing (or sitting) on the nucleus, leading to 

Since the charges cancel and the atom has a radius of zero, these atoms 

would not combine to form molecules. Thus, in classical mechanics the 

atom is not stable! If classical mechanics provided the proper 

where 

Since mp = 1836 m,, then p = 0.9995 m,, and for our purposes we can consider 
just the kinetic energy of the electron as in (2). 

For systems containing charges, this is accompanied by emission of light. 



description of atoms, and we would not be here pondering the universe. 

The solution to this problem is provided by quantum mechanics, as 

will be discussed below. Essentially the conclusion is that electrons must 

be described in terms of wavefunctions p(r), where the shape of the 

wavefunction simultaneously determines both the kinetic energy and the 

potential energy. [In classical mechanics we can independently adjust r 

and p.] The result is that the state of the system with lowest potential 

energy (r = 0) has an infinite kinetic energy preventing the atoms from 

collapse. 

5 1.1.2 INTERFERENCE AND DIFFRAmION OF LIGHT 

Before proceeding to a discussion of quantum mechanics, we will 

review some relevant features concerning the properties of light. 

The early controversy upon the nature of light between Newton, who 

considered light as corpuscles, and Huygens, who considered light as 

waves, was settled partly on the basis of the fact that (coherent) light 

waves interfere, a property difficult to explain except on the basis of 

waves. Basically, the idea is that 

(i) light is described by a wavefiLnctbn 

that depends upon x and t, for example, 

(where h is the wavelength and v is the frequency), 

(ii) detection of the light is proportional to the square of the wavefunc- 
, 

tion (called the intensity ) averaged over a time long compared with 

the frequency 



where the brackets indicate an average and the subscript t indicates 

that the average is over t, 

(iii) superimposition of two wavefunctions leads t o  a new wavefunction 

where the amplitudes add, and 

(iv) the intensity for two superimposed waves is [from (ii)] 

where the i!ld and i z id  are the intensities of the component waves and 

is a new interference term present only when the component 

waves are present simultaneously. 

R e  interference term in (iv) may be nonzero and can lead to complete 

cancellation of the other terms. Particularly impressive interference 

phenomena are the diffraction effects found for such uniformly spaced 

scatterers as diffraction gratings as illustrated in Fig. 1. 



Light with 
wavelength X 

Uniform grid 
of light scatterers 

screen to 
observe intensities 

Figure 1-1. 

With a set of uniformly spaced scatterers, the observed intensities are 

h sharp spikes at particular angles 4, where* sin 19, = n- From measure- 
a 

h ments of sin $obs one can calculate 7 Therefore, knowing the h of light, 

we can determine the spacing a or vice versa, knowledge of the spacing a 

can be used with sin gob t o  determine h. A comparison of the observed 

intensity with that expected if light did not interfere is given in Fig. 2. 

* To have maxima for 29, # 0, we must have nh<a; the wavelength must be small- 
er that the spacing of the scattering. 



without 
interference with interference 

Figure 2-2. 

A particularly exciting application of these ideas occurred around 

1912. By that time a number of scientists believed that x-rays were elec- 
0 

trornagnetic waves like light but with very short wavelengths, h - 1 A. If 

so, they should exhibit diffraction, if a grating could be found having 

equally spaced scatterers with uniform separations of 1 I( . In addition, 

by 1912 a number of scientists were convinced that atoms do exist 

(rather than being just theore tical constructs) and that crystals might 

consist of uniformly spaced atoms having separations of a few angstroms. 

F. von Lave, an expert on diffraction theory, suggested the experiment of 

exposing a crystal t o  a beam of x-rays and looking for diffraction spikes. 

After a couple of years of work the experiments were successful, proving 

both the wave nature of x-rays and the existence of ordered atoms in cry- 

stals. Since then, such x-ray diffraction studies have led to enormous 

advances in our atomic-level understanding of matter. 

$1.1.3 Electrons 

The critical experiment* establishing the wave nature of the elec- 

trons is that a crystal dieacts a beam of electrons in exactly the same 



was as it difbacts a beam of x-rays, as illustrated in Fig. 3. Thus, elec- 

trons must be described as waves, 

x-rays 

electrons - 
Figure 1-3. 

Indeed, from these observations one can determine the relation between 

the wave properties and particle properties of the electrons, namely, 

where p = dZ&E is the momentum of the electron and E is the kinetic 

energy of the electron, h is a constant (Planck7s), and h is the wavelength 

of the electrons (obtained from the spacing of the diffraction peaks). 

Based on this and other experiments, we now know that electrons 

should be described as wavefunctions, 

where the probability, P, of observing the electrons at  some point x is 

proportional to the square of the wavefunction, 

P ( z )  = <[q(z ,t)12>, 

* This experiment was carried out in 1928 as a test of the ideas arising from the 
theorists developing quantum mechanics . Earlier experiments had, in fact, ob- 
served what is now recognized as diffraction; however, the experiments were not 
properly interpreted. 



The consequences of this will be pondered in the next section. 

5 1.1.4 The Schrijdinger Equation 

In the 1920's, a number of experiments, such as electron diffraction, 

showed that matter exhibits interference phenomena just as does light. 

This led to the idea that matter, like light, should be described by an 

amplitude function, 

called a wavefunction, such that superposition of two systems and q2 

leads to superposition of the amplitudes 

but such that the probability of finding the total system with particular 

coordinates r and t is given by the (absolute) square of this amplitude. 

Combining (1) and (2) leads to  

and hence interference effects--as observed. 

Putting these ideas together leads to the basic postulate of quantum 

mechanics: Every physical system is described in t e r n s  of a wave func -  

Cion $ containing all observable infomation about the s y s t e m .  Ths 

wavefunction is probability amplitude, meaning that a superposition of 

states of the system leads to a superposition of the amplitudes, 

q =  mi. 
i 

(3) 

As part of this basic postulate, we assume that if and q2 are two 

acceptable wavefunctions of a system, then 



1CI = ci'$'r+c2*2 (4) 

(where c, and c, are constants) is also an acceptable wavefunction (this is 

called the principle of superposition). 

As part of this basic postulate, the probability of the system having 

particular coordinates at a particular time is taken as the absolute 

square of the wavefunction 1vl2 as in (2). Since the total probability of 

the system being somewhere is 1, we have the normalization condition: 

( d ~  is the incremental volume element and this integration goes over all 

regions of space). The normalization of the wavefunction is indepen- 

dent of time (being always unity). 

The above postulate implies that anything we can know about the sys- 

tem must be extracted from the wavefunction. Thus the wavefunction at  

some future time, to + b t  , is completely determined by the form of the 

wavefunction at  time to.  In other words, there must be some rule or for- 

mula relating +(r,to + b t  ) - pl (r) to $(r,to) = po(r). Such an association 

of functions is generally called a transformation and is denoted as 

where Zl0 is referred to as the operator effecting the particular transfor- 

mation from state p0 to state p,. Similarly, the time derivative of the 

wavefunction at  time to, &- must be determined by the form of the 
at ' 

wavefunction a t  time to, and hence we can write 

where is called the time evolution operator. For convenience we 



replace fi with f? - i&, where H is referred t o  as the Hamiltonian. 

Thus (6) becomes 

which is known as the time-dependent Schrb;dinger equation. In (7), i = 

q-3, h is Planck's constant* (1.054589 erg sec), and H has the 

dimensions of energy. Since (7) must also apply to any superposition of 

wavefunctions (3), H must be a linear operator, "F 

We find that the operator A depends upon the nature of the system and 

that it is, in general, a function of both position r and time t. 

If the Harniltonian fi is independent of time, then the solutions of (7) 

have the form 

where 

+ Actually, the original Planck's constant his 

However, we will use only hand refer t o  it as Planck's constant. 

From (4) 

where (7)  was applied to  and q2, respectively. Applying (7) directly t a  leads 
to 

and hence (8). 



fitrI54r) = h d r )  

Equation (10) has the solution 

T ( t )  = e-"Y' 

so that (9) becomes 

where p(r) is yet to be determined from (1 1). 

A t  this point we recall the quantum mechanical interpretation of two 

experiments. In the photoelectric experiment, light behaves as a stream 

of particles (called photons), each having a quantum of energy 

where 

is the angular frequency of the light. This suggests that the liw in (1 1) be 

considered as the energy in (14). In electron diffraction, the diffraction 

pattern for electrons with momentum p and energy E is equivalent to the 

diffraction pattern for light with wave vector 

and angular frequency w ,  where w is given by (12) and k is given by 

p = & .  (16) 

Thus we postulate that the energy and frequency are always related by 

(14), leading t o  



The latter equation is known as the timeindependent Schriidinger equa- 

tion and is the fundamental equation determining chemical bonding. 

5 1.1.5 The Form of the Hamiltonian 

In (18) we see that there is a relationship between the operator I? 
and the total energy of the system, E. In classical mechanics, the opera- 

t o r  associated with the total energy of the system is the Hamiltonian, H~', 

which is given by 

(for nondissipative systems), where Ta and VC1 are the kinetic and p o t e n  

tial energies. We will postulate that there are quantum mechanical 

operators ? and P, corresponding to the classical quantities T and V, such 

that the quantum mechanical operator fi is given by 

1 5 =  ? + 5 ,  

and we d l  refer to I? as the Hamiltonian operator. For a system in 

whch the classical potential VCL is velocity-independent [that is, a func- 

tion of the coordinates of the particle only], we will postulate that the 

quantum mechanical operator corresponding t o  V(r)  is just the classical 

function 

Thus for the hydrogen atom, 

For a particle moving in a potential ~ ( r ) ~ '  , the kinetic energy (classically) 

is 



where p = mv is the momentum of the particle. We will postulate that the 

quantum mechanical Hamiltonian operator corresponding to (20) is 

where jj is the quantum mechanical operator corresponding to the 

momentum. 

Now we need the form of the quantum mechanical momentum opera- 

tor, j5. A plane wave of wave vector k and angular frequency o has the 

form 

and hence the wave vector is given by 

l l d  k = -[-*I. P i  

From the diffraction experiments it was found that p = Ids, leading to 

Thus we postulate that the momentum operator j'jZ corresponding to 

momentum in the x direction is given by 

and similarly for the other directions 



- 19- 

Just as the classical momentum is a vector quantity, the three quantities 

in (23) are considered as the three components of a vector operator 

where V is the gradient operator. 

Now we construct the kinetic energy operator. Since 

we obtain 

and hence 

From (18), (19), and (26) we obtain 

as the explicit form of the Hamiltonian for a particle of mass m moving in 

a potential V(r). 

Basically, the Schrodinger equation (8) arises from considering the 

time evolution of a system, and the Hamiltonian fi describes how the sys- 

tem changes with time. If we change the system, say, by applying an 

electric or magnetic field, this change is manifested by a change in the 

Harniltonian 2. Such changes in lead to changes in $. With suitably 

ingenious experiments, it is often possible to determine some thing about 



how $ changes in response to the field and thereby something about the 

form of 1/, before changing E?. In this way we can determine various pro- 

perties of $. Ultimately each physical property can be related somehow 

to some type of change in the Hamiltonian of the system and hence to 

some (Hermitian) operator, 

1 1.6 More on the Schmdinger Quation 

51.1.6a The Hilbert Space 

Given any two functions 11, and $2, we can generate from (3) an 

infinite number of wavefunctions 

by using various C1 and C2. In addition, there is an infinite number of 

choices for the functions 9, and 7,b2. Even so, the postulates of quantum 

mechanics lead to constraints on the functions, and hence we need not 

consider every wavefunction. For example, from (5) we need consider* 

only wavef7mctions for which the integral of the square of the wavefunc- 

tion is unity <$I$> = 1. Of course, given some wavefunction 3 with 

with finite (nonzero) a, we can always define a new function* 

= ?/<a 

that is normalized, i.e., 

On the other hand, we need n o t  consider any wavefunctions il, for which 

* Note that u can never be negative. 



the integral J d.r l $ j 2  does not  converge. That is, we need deal only with 

square-integrable functions. The set of all possible such functions (satis- 

fying whatever boundary conditions are being imposed) is referred to as 

the Hilbert space (for systems having t h s  particular set of boundary con- 

ditions). Thus the Hilbert space is merely the collection of all  possible 

wave funct ions f w OUT s y s t e m .  

9 1.1.6b H e m i t i a n  @ e ~ a t o r s  

In Appendix A we consider the implications of requiring that the 

norm of the wavefunction be unity, 

<$I$> = 1 

and hence independent of time for any superposition of wavefunctions, 

9 = %+fj  

The conclusion is that for all possible functions pi and pj the Harniltonian 

operator H must satisfy the condition 

J d r ( p q i )  *qj = J d r q i  **(kqjj) 8 

which we denote as 

<T~&)l$j> = <qi 1?Ilqj> . 

Such an operator is called Hermitian. 

The expectation value 

of a Hermitian operator is always real (see Appendix A). Hence the 

energy 



in the Schrodinger equation must be real. 

In Appendix A we show that the momentum operator, p = (Wi)V, and 

the kinetic energy operator, ? = (1/2rn)fi2, are hermitian. Similarly, any 

function of coordinates, V(r), is hermitian, so that the Hamiltonian in (27) 

is also hermitian. 

5 1.1.7 Analysis of Kinetic Energy and Potential Energy 

In the above sections we have established the Schrodinger equation 

where 

Multiplying both sides of (18) by p* and integrating leads to 

where 

and 

< ( P I P >  = 1 .  

Defining the numben and as 



we see that the total quantum mechanical energy E can be written as a 

sum of quantities 

- 
E = T + V  

interpreted as a kinetic energy (7) and potential energy (7). 

The quantity (29) can be rewritten as 

v = J d 7 ~ ( 7 ) V ( 7 )  * 

where 

is the probability of finding the system in the volume element dr  near 

configuration r. Thus V corresponds to the average of the classical poten- 

tial energy, weighted by the probability of the electron being at any par- 

ticular position. 

As written in (6), does not seem to bear much relation to the classi- 

cal kinetic energy. However, in Appendix B we show that 

so that (28) becomes 

Since p̂  = (Wi)V, we see that 

- 1 T = ----<IfjpI2> , 
2m 

1 which can be compared with the classical kinetic energy, TCL = %p2, 

suggesting that < Igcp 1 Z> corresponds t o  the square of the classical 

momentum. Throughout this course we will find (32) to be a useful way to 

think about kinetic energy. Ths expression says that big +gradients or 



slopes lead to large kinetic energy, and hence the best kinetic energy 

occurs  f 07 the smoothest fmt ions. Thus, comparing the wavefunctions 

in Fig. 4 (all normalized), we see immediately that rp, has the highest 7, 

while p, has the lowest.* 

*b 

Figure 1-4. 

The essential difference between classical mechanics and quantum 

mechanics is that in classical mechanics the kinetic energy and the 

potential energy are independent (one is determined by momentum, the 

other by position), whereas in quantum mechanics T and 7 are simul- 

taneously d e t e m i n e d  by the w a v e ~ u n c t z o n ,  with the kinetic energy pro- 

portional to the average square of the gradient of the amplitude function. 

I t  is the balance of trying to find a wavefunction leading to  both the 

lowest T and the lowest that is responsible for the stability of quantum 

mechanical atoms. 

* Of course, (32) assumes that <p 1 q> = 1. 



51.2 The Ground State of Hydrogen Atom 

In thls section we consider the ground state of the hydrogen atom, 

that is, an electron with mass m and charge -e interacting with a nucleus 

of infinite mass and charge +Ze. Classically, the energy is given by 

where r is the distance of the electron from the nucleus. Thus the 

ground state (lowest energy) is for r = 0 and p = 0, leading to E = -=. 

That is, the classical H atom collapses to a point. 

Quantum mechanically, the Hamiltonian is 

and the energy is obtained by solving the Schrodinger equation, 

We will find that the quantum mechanical form of the kinetic energy 

keeps the electron from collapsing into the nucleus. 

In these sections we will obtain the wavefunction p(r)  for the ground 

state of H atom. The result is that 

where 
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a0 = @/me2 . 

In 51.2.3 we define atomic units where 

h =  1 ,  rn = i ,  f e l  = 1 . 

In these units, the unit of length is 

0 

1 bohr = lao = @/me2 = 0.529177 A ,  

and the unit of energy is 

1 hartree = lho = e2/ Q = me4/* = 27.21 16 eV = 627.510 kcal/ mol. 

In these units, the Hamiltonian for H atom becomes 

. the energy becomes 

and the scale parameter becomes 

< = z .  

Before going into the details of the wavefunctions of the hydrogen 

atom, we will consider why such an atom can exist. 

91.2.1 AtomsExist! 

In §1.1.1, we found that the classical description of the atom leads to 

collapse, 

1 T = - ~ ~ - S O  as p  + O  
2m 

Therefore, the lowest energy state is for the electron sitting on the 



nucleus. Since the charges cancel, this is like not having an atom. Now 

we will look at this problem with quantum mechanics. A major difference 

in quantum mechanics is that both T and 7 are determined by the same 

quantity, the wavefunction, whereas in classical mechanics, T and V 

involved independent quantities p and r. Thus, 

Consider now the sequence of similar wavefunctions in Fig. 5. * 

* To be specific, consider the normalized function 

where** N = I/- Thus, if R is very large, @ decreases very slowly with r, 
leading to the delocalized function a in Fig. 5a, while with very small R, p de- 
creases rapidly to zero for small r, leading to the localized function in Fig. 5c. 

<Gz> = sin $d$ d$ J q2r2dr = 4~ N2 r z d r  e -2 ( r /R)  
0 -7r 8 0 

00 

where we usedJ e-p pm d p  = n! 
0 



de loc aiizgd 
- large R 
V slightly negative - 
T slightly positive 

Figure 1-5. 

localize$ 
- small R 
V very negative - 
T very positive 

Clearly, becomes more and more negative (lower energy) as the elec- 

tron is localized closer and closer to the nucleus (just as in classical 

mechanics), and in the limit the wavefunction leading to the best 7 is 

localized at the nucleus ( R  = 0).  However, this localization of the elec- 

tron near the nucleus now leads to a very large and positive 7 .  Since 7 

and 7 have opposite effects as the electron is concentrated near the 

nucleus, we need to be a little more quantitative in the analysis. 

First we define an average radius 72 as 

leading to 

Consider now some wavefunction, say b, in Figure 5 as the reference 

wavefunction (with R = 1 in some units) and let 

- 
Vl and 7, 

be the energies for this wavefunction. Using this reference point, we will 

examine how 7 and 7 change as the wavefunction is squeezed or 



expanded. * 

From ( 5 )  we see that 

In order t o  see how kinetic energy changes, note that each term has the 

form 

Thus, becomes small for delocalized smooth functions (large R ) ,  and T 

becomes large (and positive) for localized functions (small R ) .  From (6) 

and (7) we see that 

(note that is always positive and is always negative). 

Consider first the case as -. =, then from (6) and (7) 

and 

* The technical, term is scaled 

1 Basically, the gradient is proportional to -and hence the gradient squared is 
2 R 

proportional to [g . 



as expected. For sufficiently large (that is, TZ >> IT1/V1 I), we see from 

(8) that 

and hence the total energy 

must be negative. However, for very small R (that is, R << IT,/vll), we 

see from (8) that 

and hence the total energy must be positive. Thus, the energy of the 

wavefunctions in Fig. 5 must behave as in Fig. 6 as a function of R (i.e ., as 

a function of the size of the wavefunction). That is, the lowest energy 

(corresponding to the ground state of the atom) occurs a t  a f i n i t e  size, 

R = Ram. In quantum mechanics the hydrogen atom is stable! 

\ 

Figure 1-6. 

In the above example, we considered just the stretching and 

compression of the one function considered in Fig. 5. However, the same 

result is obtained independent of the shape (namely, the optimum energy 

. occurs for finite R ) ,  and hence trying all possible shapes we will eventu- 

ally find the optimum wavefunction and its optimum R .  This optimum 

wavefunction is discussed in the next section. 



Summarizing the above discussion, we find that: The potential 

energy wants the wavefunction to be localized at the nucleus. Thus, 

starting with a delocalized wavefunction (Fig. 5a), the total energy drops 

as the wavefunction is localized closer to the nucleus. This localization 

that aids the potential energy leads concomitantly to a more repulsive 

kinetic energy; however, for sufficiently diffuse wavefunctions, potential 

energy always wins.* On the other hand, the kinetic energy increases 

quadratically as the wavefunction is compressed, while the potential 

energy only drops linearly, so that eventually the increase in kinetic 

energy will prevent any further contraction of the wavefunction. For the 

optimum wavefunction there is a balance in these potential energy and 

kinetic energy terms. One might say that kinetic energy provides a pres- 

wTe that keeps the atom from collapsing. 

5 1.2.2 The Ground State Wavefunction 

Now we wish to obtain the wavefunction p(r )  of the ground state of H 

atom, 

where 

The Harniltonian in (1) is independent of orientation of the atom in 

space, and hence the eigenfunctions will have the form 

where f is a function of r only and Z(fi,p) is a function of angular coordi- 

+ We are assuming here Coulornbic attractions. 



nates only. Since kinetic energy favors having smooth wavefunctions, the 

ground state wavefunction should be as devoid of wiggles as possible. 

Thus we will take Z(*.(p) as a constant leading to 

for the Schr6dinger equation. 

There are straightforward mathematical techniques for solving (9); 

for example, see Appendix D. Here we will use a physically oriented 

approach t o  examine some features of the solutions. A t  r = m, the poten- 

tial in (1) is zero; thus the bound states of (2) have negative energy, 

Now consider a very large r so that the Coulomb term is negligible, 

In this case the Schrodinger equation reduces to 

where 

(note that E is negative and hence ( is real). Consider a point along the 

positive x axis. Since r is very large, (af / a y )  * O and (af /az) a 0. 

Thus (12) becomes 



Consequently, 

(f = e+cz is also a solution, but this function is not normalizable). Since 

f is spherically symmetric, the wavefunction a t  very large r is of the form 

f ( r )  = e-ir . ( 14) 

Energy 

4' 
I 
I 

Region 
satisfying 
(11 ) 

1 Region 
gy= 0 I +satisfyi 

I t 

1 D 7 

energy = -E I \chssical tur.ng point 

T7 ze2 

Figure 1-7. 

In Appendix D we show that the wavefunction (14) is an eigenfunction 

of (10) for all r if  ( is chosen so that 

where 

From (13) and ( 15) we have 

and hence 



Normalizing the wavefunction (14) leads to (see Appendix D) 

where 

This wavefunction is plotted in Fig. 8. 

(a) - Line plot of the H atom orbital. (b) Contour plot of the H atom orbital. 
Adjacent contours differ by 0.05 a. u. 

Figure 1-8. 

The average radius of the wavefunction ( 16) is 

so that 

where a. = @/me2 is referred to as the Bohr radius (or, more simply, the 

Bohr) in honor of Niels Bohr. Substituting into (15) leads to 



which can be compared with 

Thus 

and 

Equation (20) provides an easy way to remember the proper energy 

expression (it is just half the total potential energy). 

For the hydrogen atom ( Z  = I),  the  above equations become 

where 



Average Distance of Electron from Nucleus 
(121) = at,) 

(121 = 2%) 

V = O *  distance along z axis 

Figure 1-9. 

e2 .-3 v = +  
2 

v, ,e  - 
a, 

Potential energy (V = e2/r) 

In Fig. 9 we show the potential energy as a function of distance. Irnagin- 

j r  energy of ground state 
(E = -$ e2/ao) 

ing a classical particle with this same energy E moving in the potential 

V(r) = - (e2/r), we would find the particle bouncing back and forth from z 

e2  e 2  e2  = -2ao to z = +2ao. The kinetic energyis T = E - V  = E + -= - -+ 
T 2ao T 

For r > 2ao, we would have T < 0, but this is not possible classically since 

T = 5 m v 2  must be positive. Thus the classical limit for the motion of the 

electron is lzl = 2a0, at  which point the velocity has reduced to zero. In 

the quantum description there is a finite probability (but not large) of the 

electron being farther than 2ao from the nucleus. 

Note that the wavefunction (17a) i s  positive for all k i t e  x, y, z. Since 

it is never zero for finite distances, we say that the wavefunction is node- 

Less. 

As mentioned above, the "size" of the atom is = 3 thus a natural 
2 '  

unit of length for atomic problems is the bohr radius 
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The quantity ( e 2 / a o  = me2/#) in the energy expression (17b) has 

units of energy. I t  is referred to as the hartree (in honor of D. R. Hartree 

who first suggested the atomic system of units in 1927)* and is denoted 

as ho, 

so that the energy of the hydrogen atom (17b) becomes 

Throughout this course will encounter quantities such as a, = hz/ me2 

corresponding to a length, h0 = e2/ a0 = me4/h2 corresponding to an 

energy, and dimensionless quantities such as 

e 2  - a = - -  1 
~ I C  137.03604 (26) 

(the fine structure constant). 

We will find it convenient to use a particular set of units, called 

atoDnic units, ** where 

We use these units because they simplify many of the equations of quan- 

tum mechanics and give a reasonable order of magnitude (near unity) for 

the properties of molecular systems. Some useful conversion constants 

* D. R. Hartree, B o c .  Camtridge Phil. Soc., 24.89 (1927). 

** Some times called hartree atomic units tO distinguish from other occasionally 
used atomic units; see Appendix E. 



are included in Appendix F. 

With atomic units, the Hamiltonian for the hydrogen atom becomes 

z = -)$v2-- 
T (1') 

and the ground state wavefunction become 

where 

and the ground state energy becomes 

51.2.3a Conve~sion Factors 

In order t o  compare the results of quantum mechanics (expressed in 

atomic units) with those of experiment (expressed in cgs units), it is 

necessary to become facile at converting between those units. To do this 

most simply it is sufficient to remember a few basic conversions (e.g., 

energy and distance) and to rewrite the expressions involving other quan- 

tities in terms of these basic units before converting. Thus, from (17) the 

ionization potential of the ground state of hydrogen atom is 

In atomic units this quantity is 

I h  = 0.5 ho , 

and experimentally it is known that* 

* The numbers in parentheses indicate the estimated limits of error in the last di- 
git quoted, the standard deviation. 



e2  
1 ho = - = 27.21161 eV . 

a0 

Sida r ly ,  using the known values of li m. and e 

h = 1.0545807(56) x gm cm2 see-' 

e = 4.803242(14) x lo-'' gmg cm3'2 sec-' , 

we findthat the atomic unit of length is 

#? 1 a0 = - = 0.52917704(4)A . 
m e  

Another useful relation is the fine structure constant 

a dimensionless constant. In atornic units, e = 1 and fi = I ,  and hence the 

speed of light is 

in atomic units. From the cgs value of c, 

c = 2.99792458(1) x 10" cm/ see , 

we find the atomic unit of time (denoted T ~ )  

t o  = 2.41888 x 10-17 sec . 

** This is corrected to correspond to a nucleus of infinite mass. 

7 A .  underline indicates that there is uncertainty in the underlined number. 



The biggest disadvantage in using atomic units is that the various 

quantities such as 6, e, and m, will be missing from the equations, making 

it difficult to convert to cgs units. The best way to convert is to rewrite 

the quantity of interest in terms of energy, length, and velocity quantities 

and then to use the above conversions. For example, what if we want to 
0 

evaluate the Coulomb interaction between Na+ and C1- at 10 A? We con- 

vert R to bohr 

Since lei = 1, the energy of interaction in atomic units is 

We can now convert back t o  electron volts, 

E = -0.052917 x 27.2116 = -1.43998 eV . 

In general, then 

I t  would be instructive to calculate other quantities in terms of 

atomic units, e.g., what is the average momentum of the electron in the 

ground state of H? In Bohr's model, how long does it take the electron t o  

orbit the atom? 



51.3 THE NODAL T H E O E M  

Even without carrying out detailed calculations of the eigenfunctions 

for a system, j t  is often possible to make some general conclusions con- 

cerning the ordering of the states by considering their nodal structures 

(i.e., the loci of points for which = 0). Here we will develop some of the 

general considerations for such analyses. 

First we consider a one- dimensional ,  one-particle system with Ham- 

iltonian 

H = - -  d 2  
? + V ( Z ) .  2M dx (1) 

where M - m/&? and V(x) is some function of x depending only upon the 

spatial coordinates. * If this potential contains bound states, then we can 

prove the nodal theorem: 

i) The ground state wavefunct ion does not change sign (i-e., has no 

nodes); 

ii) The bound state with n sign changes (n nodes) has a lower energy 

than the state with n + 1 sign changes (n + 1 nodes). 

That is, 

where n is the number of nodal points (internal to the boundaries). In 

the case of a sufficiently singular potential, some inequalities in (2) may 

be equalities. 

* [V(x) is independent of rnorner,turn and spin and is not an integral operator]. 



The nodal theorem is proved in Appendix C. Here we will provide 

some intuitive reasoning concerning this theorem. 

5 1.3.1 The Ground State is Nodeless 

Consider first p,, the lowest eigenstate of the Hamiltonian 

a91 = El92 

having one sign change as in Fig. 10a. 

Figure 1-10. Illustration for the Nodal Theorem. 

From q1 we can form a wavefunction po = 1 (not necessarily an eigen- 

function of I?.) that has no sign changes, as in Fig. lob. Since q1 is nor- 

malized, then po is also normalized, 

and the energy of po becomes 

The potential energy of po is the same as that of p,, 

< ~ o l V l ~ o >  = J h  V(x)l5Q0(z)l2 = f& V(x)l+1(x)I2 = <q1lvIq1> . (3) 

From Appendix B the kinetic energy of q, can be expressed as 



But 

since the integrands are equal except at one point (x,). Thus the kinetic 

energies of po and are equal, 

and consequently from (3) and (4) the total energies of q, and po are 

equal, 

That is, given any eigenfunction of fi that changes sign, we can con- 

struct a function cpo which does not change sign and yet has the same 

energy. 

Now consider a new function identical to y ? ~  except that it is 

smoothed in the region very close to the position of the node c. If the 

potential is not singular at this point, the function Po can be chosen to 

have the same potential energy (and normalization) as po, 



However, since 

Figure 1-11. 

in the region near c, pot will have a smaller kinetic energy than cpo, 

Consequently, the energy of q, is lower than that of p0 

The best (i..e., lowest energy) nodeless (i.e., non-negative) wavefunction 

has an energy, Eo, no hlgher than-to and hence 

Similar arguments can be used to derive the other relations. Thus. for a 

general potential we expect the bound solutions to increase in the 

number of nodes as E increases, as in Fig. 12. 



Figure 1-12. Illustration of the nodal patterns of successive states of a 

general (onedimensional) potential. 

Ij I .  3.2 Multidimensions 

In two dimensions, a wavefunction that changes sign will have a line 

of points with = 0 (a nodal line), and for three dimensions there will be 

a surface of points with + = 0 (a nodal surface). Just as in one dimension, 

the ground state will always be nodeless. However, for multidimensions 

one can no longer use the nodal theorem to order all states. Thus, in two 

dimensions we can construct three orthogonal wavef unctions (all orthogo- 

nal to the ground nodeless state), each with one nodal surface, as illus- 

trated in Fig. 13.* 

* We will, in this section, use the same notation d as for states of the three- 
dimensional H atom. 



(a)  2s function (b)  2p function 
Y 

( c )  2px function 

Figure 1-13. Two-Dimensional States w i t h  One Nodal Line. 

If the potential energy is independent of angle, the wavefunctions in Fig. 

13b and 13c will have the same energy; however, the wavefunction in Fig. 

13a may be higher o r  lower than the other two, depending on the exact 

form of the potential. Even worse, we cannot use the nodal theorem to 

determine whether the 3s function in Fig. 14a is above or below the 2p 

functions of Fig. 13b and 13c. 

I 

(a )  3s function 

Figure 1-14. Two-Dimensional States with Two Nodal. Lines. 

The clue to which comparisons can be made and w h c h  cannot is 

apparent from the way that the one-dimensional theorem was proved in 

the previous section. Start with the optimum wavefunction of some nodal 

structure, say Fig. 14b, and change the sign on opposite sides of a single 



nodal surface to obtain either Fig. 15a or 15b, each of which has exactly 

the same energy as Fig. 14c. 

Figure 1-15. 

The wavefunction in Fig. 15a is an upper bound on the Zp, wavefunction of 

Fig. 13b, and the wavefunction in Fig. 15b is an upper bound on the 2s 

wa'vefunction of Fig. 13a. 

Figure 1-16. 

Similarly, starting with the 3s wavefunction of Fig. 14a, we see that 

the wavefunctions in Fig. 16 have the same energy and are upper bounds 

to the 2s wavefunctions of Fig. 13a. However, there is no wavefunction to 

compare the energy of the 3s wavefunctions with those of the 2p 

wavefunctions. Continuing in this way, we can derive the following rela- 

tions: 



etc. 



§1,4 VIBRATION AND ROTATION 

Throughout this course we will focus upon the electronic wavefunc- 

tions for molecules. Thus for an N electronic wavefunction, we determine 

*el ( 1,2,. . . , N) , 

with energy 

where I? is the Hamiltonian for the system. The electronic wavefunction 

and its energy will depend upon the geometry of the molecule. For each 

geometry, we solve for the optimum wavefunction and energy at that 

geometry. For a diatomic molecule the result is a total energy that is a 

function of R (internuclear distance), as indicated in Fig. 17. 

Figure 1-17. 

As the nuclei move together or move apart, we imagine the electrons 

readjusting at each instant t o  reoptimize for that particular R. For a clas- 

sical system, if we started at some particular R, say point b, the nuclei 

would move apart until they reached point c and would then come 

together till point b and would continue oscillating between these points 

(assuming no friction). Starting at  point d, the R would continue increas- 

ing until R = m. On the other hand, if we started at point e, the system 

would stay still. Thus point e is called the equilibrium bond distance 



( )  Starting with the molecule at equilibrium, Re,  the energy t o  pull it 

apart (to break the bond) is called the bond energy, D.. 

For energies below the limit at infinity, we can think of the system in 

terms of two masses (each corresponding to a proton) connected by a 

spring of length %. However, in quantum mechanics, this spring can 

never be completely at rest. The nuclear motions are described in terms 

of wavefunctions, just as are the electrons, and the kinetic energy of the 

nuclear motions depends on how localized the wavefunctions are. To 

localize the nuclei a t  exactly R = % would imply an infinite kinetic 

energy. The result is that for the ground state the nuclear wavefunction 

has the form 

That is, the most likely R is %, but the nuclei have a finite probability of 

being found at other R near Re. The result is that the energy of the 

molecule is higher than the absolute minimum (E = -De ) in the energy 

curve by an amount referred to as the zermpoint energy. This lowest 

state, Fig. 18, is referred to as the ground vibrational state ( Q ~ ~ ,  with v = 

O), and one thinks of the molecule as vibrating back and forth with a fre- 

quency vo. 

A t  the bottom of a potential curve, the slope of the energy curve is 

zero and the curvature is positive, so we can write 



where k,  the curvature* a t  the bottom of the well, is called the force con- 

stant. In this approximation (called the harmonic oscillator approxima- 

tion), the vibrational frequency is given by 

where p is the reduced mass 

and M I  and M2 are the masses of the two nuclei. In this case, the zero- 

point energy is given by 

?4 hvo (4) 

(where h is Planck's constant). Thus the energy of the ground vibrational 

' state is 

where 

The quantity Do is the actual energy to break the bond starting with the 

molecule is in the ground vibrational state, and it is the quantity that 

would be measured experimentally. 

In QM, the excited vibrational wavefunctions must be orthogonal to 

the ground wavefunction. leading to the form in Fig. 19, 



Figure 1-19. 

for the first excited vibrational state (v = 1). The excitation energy is 

(in the harmonic approximation). The separations between vibrational 

states, as in (6), can be determined experimentally, thereby providing 

experimental values for the zero-point energy (4) and for the force con- 

stant k. 

So far we have considered the molecule to lie along the z axis. In 

fact, the axis of the molecule can be oriented along any direction in 

space. Generally, the molecule will be rotating, but the ground rotational 

state is the one for which all orientations are equally likely. This is analo- 

gous to the L = 0 or s state for electrons and is denoted as the J = 0 rota- 

tional state. Excited rotational states have energies of 

where I = p ~ t  is called the moment of inertia. This is analogous to the 

classical rotational energy 

E S ~ S S  = 1 Tot - L~ , 21 

where L is the rotational angular momentum. Experimentally, the bond 

distance of molecules is often obtained by measuring the rotational ener- 

gies and thereby deriving I and hence R,. 



- 53 - 

For Hz and HJ, the vibrational energies are 

h vo = 4401 cm-I = 0.546 eV = 12.50 kcal for Hz 

h vo = 2322 cm-I = 0.288 eV = 6.64 kcal for H$ 

and the rotational energies are 

EJ = B J ( J  + 1) . 
where 

B = 60.05 cm-' for Hz 

B = 30.21 cm-' for H2f . 

In these systems, the total bond energies are 

Do = 36117cm-I = 4.47% eV = 103.3 kcal for H2 

DO = 21382 cm-' = 2.651 eV = 61.1 kcal for Hzf . 



Appendix 1-A. Hermitian Operators 

In $1.1, we found that the basic postulate of quantum mechanics 

implies that the wavefunction 11 is normalized, 

and that the time derivative of the wavefunction is determined by the 

relation 

Here we will show that these conditions imply that H is a Hermitian 

operator 

<qjIflI&> = <(Hdij)I&> = <$jIHI& 

for all (allowed) functions llj and &. This roperty results from the 

requirement that the total integrated probability (1) not change with 

time for any superposition of (allowed) functions. 

A Notation 

First we must establish some notation. For any operator fi and any 

functions qj and h, we define the jk matrix element of as 

Bjk ' <$j 18 1 qk> ' J d~$j*(B&) . 

The H e m i t i a n  conjugate of 3 is defined as the operator gt 

= <qj 1 5' 1 h> = f d7(Eqj) * h = < ( G j )  1 (&> 

for all qj and qk (of the Hilbert space). From (3) we see that 

and hence (4) can be written 



If is equal to its Hermtian conjugate, 

we say that is Hermitian and write 

From (1) the total probability of finding the particle somewhere, 

is independent of time. Thus, taking the derivative with respect to time, 

we have 

Substituting the Schrijdinger equation (2) here leads to 

which implies that the quantity 

E = <$lHI$> 

(referred to as the energy) is real. 

Consider now the superposition 

$' = Cjqj + C k h  

(where Cj and Ck are numbers, possibly complex) of two states qj and qk 

that are orthogonal 



at some time to. Then, since <$I$>, <$', I$,>, and <qk1qk> are all unity and 

independent of time, it must be that 

is also independent of time. Similarly, considering 

' = i Cjqj + Ck& 

(where i = .\T-i), we find that for <qf/q'> to be independent of time 

requires that 

i c*kcj <& 1 qj> - i c*jck<@j 1 %> 

also be independent of time. Combining (10a) and (lob) leads to the con- 

dition that 

is independent of time. Ths leads to 

and hence 

<qj I I$k> = <qj I qk> (9b) 

(which also applies to j = k). This relation (9b) must apply t o  all possible 

pairs of functions qj and qk, and hence the Hamiltonian operdo~,  H, must 

be a Hermitian operator. From this derivation we see that the Hemitian 

property of I? resrrlts from the assumption that the total integrated pro- 

bability of any supe~os i t ion  of functions is independent of time (con- 

servation of normalization). 



1-A.3 The Momentum Operator 

An example is appropriate here. Consider a one-dimensional sys tern 

with coordinates in the range 

Is the operator 

Hermitian? To find out we consider 

Integrating by parts, this becomes 

Thus, the operator is Hermitian if and only if the boundary conditions 

are such that 

*i(a)&(a) = *j(o)$kk(o) (12) 

for all allowed functions qi and qk. Thus, it is nonsense to say that 

e = -- is an Hermitian operator; rather, one must say that the opera- 
1 dx 

tor is Hermitian given such and such boundary conditions. Some accept- 

able boundary conditions for the above case are 

(9 $(a) = 0, q ( 0 )  = 0 (this is the case of a particle in a box), 



$(a) = $(0) (this . corresponds to periodic boundary conditions 

where the point x = a is physically equivalent to the point x = 0; a 

common example is for angular coordinates ip where a = 2n is 

identically the same point as x = U), and 

(iii) forsystemsofi~niterange-m<x<+~,thenfor~tobenormal- 

ized, <pip> = 1, it must be that (P -r 0 as x -L *=, leading hence to 

If the boundary conditions are such that 9 is Hermitian, then the 

kinetic energy operator 

is necessarily Hermitian. T h s  follows by applying the Hermitian proper- 

ties of p sequentially, 
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Appendix 1-B. The Kinetic Energy 

Summary: We will show in this section that the matrix element 

tab = <(pal -%p :! ~ b >  

can be written as 

tab = ?'?!<V("aS vpb> , ( 2 )  

where the dot product is indicated. Thus the kinetic energy of an orbital 

becomes 

in atomic units or 

in other units. 

Consider first the integral 

Integrating by parts, this becomes 

where 

(this is referred to as Green's theorem). However, for rp, and ( ~ b  to satisfy 

the basic postulates of QM, we must have 



and hence 

~ 7 6 %  + 0 as x -3 *=  . 

Thus 

Q(x= +m) = 0 

and we obtain 

Proceeding similarly for the other terms of ( I ) ,  we obtain 

tab = % f d7 [V(D *a ' Vpb] 5 <V(Da ' v(Db> , 

and letting pa = pb leads to (3). 



Appendix 1-C. The Nodal Theorem 

In this section we consider the eigenfunctions p, for a general one- 

dimensional system, 

where 

is real (so that the eigenfunctions are real) and 

M = m/@ . 

Letting n denote the number of nodes (internal to the boundaries), 

we will show that 

and 

(2) 

That is, the ground state of the system is nodeless and the state with n 

nodes has a lower energy than the state with n+l nodes. For sufficiently 

singular potentials, the inequalities in (1) and (2) become equalities. 

1-C. 1. The Inequalities 

Consider first the functions p, and p,, which are the eigenstates of fi, 

RPfJ = (T + V)p0 = Eopo 

f i p l  = (IT + V)pI = E1pI , 

with zero and one node, respectively, as in Figure 20. Here a and b are 

the boundaries of the system (they may be at 2 m) and zeroes at the 

boundaries are not counted. 



Figure 1-20. po and pl for the proof of the Nodal Theorem. 

First we will show that  

Letting c be the location of the node in pl,  we consider the region 

so that both p1 and (po are positive. Then from (3) we have 

for all points in region (4). Thus the energy difference is given by 

1 - 1 - 1 
El - Eo = -T PI - -T (Po = -lpo(T p1) - ipl(iT$dO)l , 

P1 Po P 1P0 

The integral over all space of the term in brackets is zero since T is Her- 

however, the integrand is generally n o t  zero. 

* For a one-dimensional system, the orbitals can always be taken as real. 



To estimate the sign of (6), we multiply by plpO, then integrate from a 

to c, and then divide appropriately to  obtain 

B (El - Eo) = - 
A l 

where 

Integrating by parts, the first term of (8) becomes 

Combining (7)-( 10) together, we obtain 

Since 

and 



we obtain 

that is, 

Thus the nodeless wavefunction has a lower energy than the wavefunction 

with one node. The same proof shows that po has a lower energy than any 

wavefunction with more than one node. Hence, the ground state of the 

system hus no  nodal points (inside the boundaries). 

Similarly, the above proof can be applied to the comparison of En and 

&+,, that is, the energies for wavefunctions having n and n+ l  nodes, 

respectively. The result is that 

%+l > En 8 (13) 

and hence the eigenstates of a system have energies increasing in the 

same sequence as the number of nodes. 

1-C.2. Singular f otentials 

To obtain (12) we assumed in (1 1) that 

PO(C) # 0 

and that 

Usually these conditions (14) are satisfied; however, there can be cases 

where the potential is such that one of the quantities in (14) is zero. In 



this case we have 

E l - E o  = 0 ,  

and hence the general condition (12) should be 

El 2 Eo I 

and (13) should be 

En+l 2 En . 

For example, consider the case wherein the potential V(x) is so 

strongly repulsive at some point c that all solutions of finite energy must 

have a node at  c. In thls case, the functions 90 and (pl in Figure 20 will 

have the shapes in Figure 21. 

Figure 1-21. The first two solutions for a potential sufficiently singular 

at point c. 

From (11) this leads to 

so that Eo and El are degenerate. In this case, the functions po and pl will 

have 

but 

the same 

since 

shape 

both must 

each region. A t  x = c, one of 

zero there, 

them changes sign 

they have the same energy. 

If the potential is not singular at c, the function can generally lead 



to a lower energy by being positive near c (thereby obtaining a smaller 

kinetic energy). 

The presence of cases such as in Figure 9a complicated our notation 

for the states (in referring to the number of nodes). To keep things sim- 

ple, n refers to the number of points a t  which the wavefunction changes 

sign. 

Singularities in the potential would also lead to equalities in the ener- 

gies for some excited states, 

1-C.3. A Singular Example 

As  discussed above, the equal sign in (1) would occur when the poten- 

tial V(x) is sufficiently singular that the best non-negative wavefunction (po 

has a node at some point. For example, if 

the potential energy is 

Expanding 

dx) = (~(xa) + (X - XO) VJ'(x0) + . . 

we see that the dominant term in the integral 



and hence the energy diverges if (p(x0) # 0. 

Thus, for p to yield an E < (and hence t o  describe the ground state) 

it must be that 

In this case, 

E,, = El 

[assuming no other singularities in V(x)]. 



Appendix 1-D. The Ground State of Hydrogen Atom 

Summary 

The ground state of the hydrogen-like atom (with nuclear charge Z) 

has the wavefunction 

$(r1-9,p) = Nee -Zr/ a. 
I (19) 

where 

and 

is defined as the Bohr. The energy of this wavefunction is 

where 

is the average size of the atom, where a0 is denoted as the Bohr radius. 

1 1 Solution of the Schriidinger Equation 

We will solve for the ground state of the hydrogen atom, that is, the 

lowest solution sf 

P * 

J 

Since the potential term is independent of angle, the wavefunction has 

the form (see $1.1.1) 



where the angular function Z(~JI,(D) is a constant for the ground state,* 

Z(ZP,p) = I/-. 

Thus, our chore is to solve 

First we must express d2f(r) in terms of spherical coordinates, 

x = r sin6 cos p 

Since 

(where the subscript x,y indicates that x and y are fixed), we see that 

Thus, letting 

d f f f  (r) = - 
dr 

*The r,ormalization condition is 
2n ~r 

f dp sin* d.9[Z(*,(p)12 = 1 , 
(3 0 

leading to (3). 



we obtain 

a2 ] 
r = &/:f1(r)] = $ff (r) + z ar rft(r) 

a2 a2 Combinding with -f(r) and -f(r) leads then to a? Q2 

Substituting (7) into (4) leads to 

as the Schrodinger equation. Since the potential in (1) goes to zero as r 

-. m, only the states with E < 0 are bound, and hence we take 

Consider now a sufficiently large r that 

and 

In this case, (8) reduces t o  



where 

The solution of (1 1) is 

Thus all bound state solutions of (8) must necessarily go to zero exponen- 

tially. * 

Consider now the substitution of the exponential function (13) into 

the Schrodinger equation (8), 

From (1 1) the first term of each side (the long-range terms) cancel at all 

r, leaving 

Thus the exponential function (13) is an eigenfunction of the Schrijdinger 

equation if 

Since C has the units of inverse length [e.g., see (12)], it is convenient to 

consider the length quantity 

% = h ~ /  me2 (16) 

(referred to as the Bohr radius or simply the Bohr) as the fundamental 

* Note that in the limit of very large r, the functior, 

I? e - 0  

would also satisfy (8). 



atomic length leading to 

From (12) the value of C is related also to the energy, 

Thus, 

Summarizing, we find that the wavefunction 

is an eigenfunction of the Schrodinger equation with an energy of 

where 

Since the wavefunction (19) is nodeless, we know from the nodal theorem 

that this eigenfunction of fi is the ground state of the hydrogen atom. 

1 For the wavefunction (19), the average value of -is 
r 

Thus, the average potential energy is 



and the total energy can be written as 

In order to normalize the wavefunction (19). note that 

w IF 2lT w 

<@ I @> = J Sdr J sin 6 d?P dp [f (r)12 = 4n J r2drf (r)2 . 
0 0 0 z 

where the angular integral is 

Since 

we see that 

1-D.2. Analysis of the Wavefunction 

A plot of the orbital along the z axis is given in Figure 22. Note that 

the slope in the wavefunction is discontinuous at  z = 0. This singular 

behavior is referred to as a cusp and results from the singular behavior 

in the potential energy at this point. 



Figure 1-22. The ground state wavefunction, h, for the H atom (plotted 

along the z axis). 

The Schrodinger equation (3) says that 

Ef (r) 

is equal to 

I+ ze2 - -v2f (r) - - f (r) 
2m r 

for every point r. But, as r -r 0, the term 

goes to  - m .  Thus, since Ef(r) is finite, the Schrodinger equation requires 

that 

49 - -V2 f(r) 
2m 

goes to +m as r -r 0. The cusp in the wavefunction leads to a pf(r) that 

goes to +- as r -. 0 and exactly cancels the negative singularity in the 

potential term. 



Appendix 1-E. Rydberg Atomic Units 

Another set of atomic units used occasionally employs as the unit of 

energy the ionization potential of the hydrogen atom, 

This quantity is called a Rydberg and is related to the hartree by 

1 Rydberg = j5 hartree. 

With this choice for the unit of energy (me4/ 2&? = I), we cannot use the 

convenient sets of units in 51-2-23. If the unit of length is still taken as 

the Bohr (h2/ me2 = I), then Rydberg units lead t o  

and hence we must choose 

and 

If we take rn = 1, then 

These units are sometimes used by scattering theorists since the kinetic 

energy of a plane wave, (&? / 2m)k2, becomes simply k2. Also, some work- 

ers reporting band calculations on solids use Rydberg units. The series of 

books by Slater also uses these units. However, the regular atomic units 

(or hartree atomic units), as described in 81.2.3, are more convenient and 

more common, and we will always use them. 



Appendix 1-F. Units and Conversion Factors 

1-F.1. SI Units 

In an effort to bring some order to the proliferation of units that con- 

tinues to occur in the sciences, and international group adopted (in 1960) 

what is referred to (in English) as the International System of Units, or 

more commonly as SI units. 

In this system there are seven fundamental units: 

Unit Abbreviation Physical Quantity 

meter m length 

kilogram kg mass 

second s (or see) time 

ampere* A 

kelvin * K 

mole mol 

candela cd 

electric current 

thermodynamic temperature 

amount of substance 

luminous intensity 

* Note that these units are n o t  capitalized even though they are derived 

from the names of people. 

From these fundamental units can be. derived a number of combined 

units that prove quite useful. Thus, from Newton's Law, F = ma, we know 

that force has units of mass length, and it is convenient to define the 
(time)2 

unit of force (newton*) as 

I newton = 1 kg m s e f 2 .  

Similarly, a constant force F exerted over a distance 1 does an amount of 

work W, so that the unit of energy (joule) is 



1 joule = 1 newLon meter = 1 kg rn2 ~ e c - ~ .  

Some common derived units in SI are 

Unit Abbreviation Definition in Terms of 
Fundamental Units 

Physic a1 
Quantity 

liter 

newton 

joule 

watt 

pascal 

coulomb 

volt 

ohm 

hertz 

m3 volume 

rn kg force 

Nm = m2 kg ~ e c - ~  energy 

J sec-I = m2 kg ~ e c - ~  power 

~ r n - ~  = m-I kg seC2 pressure 

A sec electric 
charge 

electric 
potential 

electric 
resistance 

frequency 

The acceptable multiples or fractions to be used for the basic SI units are 

designated by the following prefixes: 



Fraction Prefix Symbol 

atto 

f emto 

pic0 

nano 

micro 

rnilli 

centi 

deci 

deka 

hecto 

kilo 

mega 

gigs 

tera 

Although the above fundamental units are convenient for a number of 

quantities, they are quite inconvenient for others. Examples include 

Physical Quantity 

- -- 

Abbreviation 

--- -p 

Definition in Terms 
of Sf Units 

Charge on an Electron 

Atmospheric Pressure 
(at sea level) 

e 

atrn 



Other units are not necessarily superior t o  the SI quantities, but 

their use is so widespread that scientists must be facile with their use. 

Examples include : 

Unit Abbreviation Definition Relation to 
Fundamental h i t s  

Kilocalorie kcal original definition was: 1 kcal = 4.184 kJ 
energy to heat 1 kg of (defined to be exact) 
H20 by a temperature 
of 1°K (at 15°C) 

Angstrom 

Electron Volt 

-- 1 A = m = 10" crn 

energychangeupon leV=96.483kJmol-I 
moving a charge of 1 
electron through an 
electric potential 
of I volt 

1-F.2. Units for Coulombs Law 

Conversion between units can sometimes get confusing for coulomb 

interactions. Coulombs law states that the force between two charges Q1 

and Q2, separated by a distance R is 

QiQ2 Total Force = - DZ 

and hence the enegy of interaction is 

In cgs units, we define the electrostatic unit of charge (esu) as that 

charge which leads t o  a force of 1 dyne when the charges are separated 

by 1 cm. Thus 

Force (dynes) = IQ(e=)l2 
[R(cm)I2 



and 

Energy (ergs) = 1 ~ ( e s u ) ] ~  
R(cm)  ' 

In SI units, the unit of charge (the Coulomb) is defined in terms of a 

current (1 ampere = 1 Coulomb/sec), and the units of current are 

related to force and distance through a different force law (magnetic 

induction). The relationship between Coulombs and esu turns out to be 

1 Coulomb = 1 e m  
(2.998 log) ' 

where the 2.998 comes from the speed of light (2.998 108 m/sec). Since 

Force (newtons) = force (dynes) 

R (meters) = R (cm) , 

the Coulomb law becomes 

Force (newtons) = [8.988 10'1 IQ (Coulomb)12 . 
[R ( d l 2  

and 

Energy (joules) = [8.988 10'1 I Q(CoUlomb)'2 . 
R ( c 4  

In SI units, the constant in t h s  expression is generally written as 

1 
8.988 x i0' = - 

4neo I 

where 

iso = 8.854 10-l2 

is called the permittivity of a vacuum. This leads to 



for the coulomb energy. 

In this course the Q1 and Q2 are always some multiple of the funda- 

mental charge on a proton (or electron), 

1e = 1.602 10-l9 C 

= 4.803 10-lo esu . 

Thus we will write 

and Q2 = q2e 8 

where q , and g 2  have no units. In addition, we will often write R in terms 

of Bohr radii, e.g., 

where r has no units. In this case the coulomb energy becomes 

':" [d . Energy = - 

where no 4m0 factor is included. In (7) the unit of energy is 

e2 I ho = 1 hartree = - 
a0 

The fast way to calculate atomic level coulomb energies in various units is 

to f i s t  express all distances and charges in atomic units, as in (5) and 

(6), calculate the energy using (7), and then to convert from atomic units 

to SI units using (8). 

Example: Calculate the interaction of two protons at a distance of R = 5 

Answer: 



1 1 E ( b )  = - = - = 0.1058 ho 
R ( a o )  9.45 

= 2.88 eV = 278 kJ/ mole = 66.4 k c d  . 

Useful conversion factors here are 

e2 = 14.3998 eV = 332.059 (kcal/rnol) k 
1-F.3. UnitsforMass 

In atomic units, the mass of the e l e c h o n  is unity; however, this is not 

to be confused with the atomic mass unit (amu) which is the standard for 

relating the masses of atoms. The modern convention is to define the 

dominant isotope of C (i.e.,12c) as having a mass of 12.0000. In these 

units, the mass of the hydrogen atom is 

1.00783 amu, 

the mass of a proton is 

1.00728 amu, 

and the mass of an electron is 

amu. 
1822.89 

Thus, in (hartree) atomic units, the mass of the proton is 

1.00728 x 1822.89 = 1836.16 

The conversion to SI units is 

1 amu = 1.660566 x kg. 

1-F.4. Energy Quantities for Photons 

The wavelength (A) and frequency (v) of light are related by the speed 

of light (c) 



h v = c .  

n u s ,  since c = 2.99792458 x 10'' cm/sec, the frequency for yellow light (A 

= 600 nm) is 

(1 Hz = 1 cycle per sec), and the wavelength for KZLA (v = 94 MHz) is 

h = 3 x  lolo = 319 crn = 3.19 m . 
94 x lo6 

In the quantum description of light, the energy of a photon is given 

(where h = 2rrK is the original Planck's constant); thus the energy of a 

photon of light can be expressed as 

1 where = -is called the wavenumber (and denoted as ern-'). Substitu- 
h  

tion for the known values of h and c leads to 

Thus, when an electron decreases its energy by 1 eV (dropping into a 

lower energy state), it may emit this energy as a single photon with 

wavelength h = 1240 nrn = 1.24 microns or wavenumber = 8065 cm-I. 

1-F.5. Other Energy Relations 

Chemists often use the energy quantity kilocalories per mole which 
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we will abbreviate as  kcal, 

1 eV = 23.06036(14) kcal. 

Recently, emphasis has been placed on SI units in which the kilojoule per 

mole (denoted as kJpm) is the energy unit, 

1 kcal = 4.18400 kJpm. 

The atomic unit of energy, the hartree, is kind of large for convenient 

use and we will often use the millihartree, denoted as  mh. Relations 

between these units are 

1 eV = 36.7490 mn = 23.0604 kcal = 96.4847 kJpm = 8065.48 cm-I 

1 mh = 0.27212 eV = 0.627511 kcal = 2.62550 kJpm = 219.475 cm-l. 

The average thermal energy of an oscillator a t  room temperature is 

1 kT = EeV = 1 rnh = 0.6 kcal = 200 crn-I = 2.4 kJpm. 

The strength of the Hz bond is 

2.5 eV = 92 rnn = 58 kca l=  241 kJpm. 

The vibrational energy ?ue of HZ+ is 

3000 cm-! = 14 mh = 8.6 kcal = 0.37 eV = 36 kJpm. 

1-F.6 Examples 

The fundamental constants are experimentally determined and 

hence the best values for them change with time. For aid in calculating 

these constants in the future, we summarize the procedure. 

1 (eV/atom) x 1.6021892 x (kJ/eV) x 4, lkcal 184 kJ x 6.022045 

x (atoms /mol) = 23.06036 kcal mol-l. 
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Therefore, 1 eV/atom = 23.06036 kcal mol-l. For force constants we use 

h 1au = - =  27.21161 * 1.6021892 * 10-l2 erg 
d (0.52917706 * lo-' cmI2 

1-F-7. Conversion Factors 

Included herein are  the fundamental constants as of 1973. The refer- 

ence is E. R. Cohen and B. N. Taylor, J. Phys. Chem. Ref. Data, 2, 717 

( 1973), and some tables from this reference are included on the following 

pages. 

Commonly used constants are: * 

1. 1 bohr = 0.5291771 (4) 8, 

2. lhar tree=27.21161(7)eV 

1 hartree = 627.5096 (4) kcal/mol = 219474.7 cm-I 

4. 1 kcal = 4.18400 kJ = 349.755 cm-I 

* A number in parentheses indicates the standard deviation in the error for the 
last quoted digit. 



5. Atomic Masses: 1 amu = 1822.887 (1) me 

This is used to convert atomic masses (mass 12c = 12.000) to  har- 

tree atomic units 

Force Constant: 1 au = 15.56919 mdyne/ l  

Gas Constant: R = 1.98719 (7) cal mol-I K-I 

Gas Constant: R = 82.0568 cc a tm mol-I K-I 

Avogadro's Constant = 6.022045 (3 1) * molecules /mol 

Fine Structure Constant: 1 /a = hc/e2 = 137.03604 (11) 

Dipole Moment: 1 a u  = 2.541765 (8) Debye 

Dipole Moment: 1 au = 2.541765 (8) * (10-l8 esu'cm) 

Quadrupole Moment: 1 au  = 1.345044 * esu cm2 

Quadrupole Moment: 1 au  = 1.345044 Buckingham 

Electric Field Gradient: 1 au  = 3.241391 * 1015 esu ~ r n - ~  

Coulomb Energies: & ( e ~ )  - 14.3998 &(kcall = R - - W R  



Table 1-F, I. Current Values for Selected Fundamental Constants. a 

Uncer- Units Symbol Value tainty 
( P P ~ )  SI cgs 

Quantity 

Elementary charge 10::; emu 
10 esu 

Planck constant 10-" ergo s 
1 oo2' erg s 

Speed of Iight in vacuum c 299792458(1.2) 0.004 10~m*s-' 1 OlOcm so' 

Fine-structure constant, a 7.2973506(60) 0.82 loo3 
[ ~ ~ c " / 4 ~ ]  (@/lit) a -' 137.03604(ll) 0.82 

Electron rest  mass 

Proton rest  mass 

Ratio of proton to 
electron mass 

Atomic mass 
1 Ow3 lqp molol NA 

Ratio amu to me 

Bohr radius, 
[p,c2/4~]-' @'/mee2) = O/~TR,  

Rydberg constant, 
Ir 0c2/4w]2 (me e4/4sl!isc) 

Avogadro constant 

9.648456(27) 2.8 1 o4 c *rnol-' 1 0' emu mol" 
2.8925342(82) 2.8 I 0" esu mol- ' Faraday constant, NAe 

Bohr magneton, [c] (eiE/2mec) 

5.050824(20) 3.9 1 oo2' J . TO' 1 002& e r g  G- ' Nuclear magneton, 
[c] (e6/2mpc) 

Molar volume of 
ideal gas at  s. t. p. 

Molar gas constant, p,,V,/T, 
(T, = 273.15 K; p, = 101325 Pa 
= 1 atm) 

. 1.380662(44) 32 lo-- J* K-' 1 0-" erg KO' Boltzmann constant, R/NA 

a Note that the numbers in parentheses are the one standard-deviation uncertainties in the last digits of the quoted wlue 
computed on the basis of internal consistency, that the unified atomic mass scale uC = 12 has been used throughout, that 
u = atomic mass unit, C = coulomb, F = farad, G = gauas, H = henry, Hz = hertz = cycles/s, J = joule, K = kelvin 
(degree Kelvin), Pa = pascal = N 0 mo2, T = tesla (1W G), V = volt, Wb = weber = T m2, and W = watt. In cases where 
formulas for constants are given (e.g., R,), the relations are  written a s  the product of h o  factors. The second factor, 
in parentheses, is the expression to be used when all quantities are expressed in cgs units, with the electron 
charge in electrostatic units. 

In order to avoid separate columns for *~electroma~natic t t  a d  *wlrtroatatic" units. bOth are given under the single . .- - - . - - -- - ------- --- ----------- 
headML8'Cgs Units- " When using these units, Ule elementary charge e in the second'column S ~ G ~ L I  k understood to 
be rep  ced by em o r  e,, respectively. - 
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Chapter 2. The Chemical Bond: H1+ and 

Summary: 

In this chapter we consider the two states of Hi 

(the LCAO wavefunctions) arising from bringing a proton up to the ground 

state of hydrogen, and we consider the two states of Hz 

(the VB wavefunctions) arising from bringing together two hydrogen 

atoms each in the ground state. As expected from the nodal theorem, 

the g state (symmetric) is the ground state for both systems. Indeed, in 

each case we And that the g state leads to bonding, while the u state 

leads to a repulsive potential curve. The g state of HJ leads to an 

increase of the electron density in the bond region; however (contrary to 

popular belief), this leads to an i w e a s e  in the electrostatic interactions, 

thus opposing bond formation. A bond is formed because of a very large 

decrease in the kinetic energy due to the molecular orbital having a 

significantly decreased gradient in the bond region. The bonding of the g 

state of HZ arises from the same term (modified by an additional overlap 

factor due to the second electron). 

The potential curves for both states of both molecules are dominated 

by exchange terms of the form 

for Hz+ and 



for H2, where S is the overlap of the atomic orbitals. The quantity T is the 

quantitative manifestation of the decreased kinetic energy (and 

increased potential energy) arising from interference of the XI and X, 

orbitals. I t  has the form 

for large R. Thus, at large R the bonding of E4+ is proportional to S, while 

the bonding of Hz is proportional to s2. Consequently, for large R the 

bond energy of Hzf exceeds that of Hz. For small R , where S 1, the bond 

energy of Hz is approximately twice that of Hz+. The u states are far more 

repulsive than the g states are attractive (due to the 1 i S and 1 * s2 

terms in the denominators of 5 and C). 

We also examine the molecular orbital (MO) wavefunction for Hz 

whch provides a simple description of the ground and excited states for 

small R. For large distances, the ionic terms implicit in the MO wavefunc- 

tion lead t o  an improper description. 



20 The Chemical. Bond in &+ and & 

Many atoms will combine with other atoms to form a strongly bound 

molecule. The point of this chapter will be to establish the origin of the 

chemical bond for the simplest one- and two-electron systems. 

We will observe the following conventions on notation in this and fol- 

lowing chapters: Lower- case Letters will be used for one- part icle  

wavefunctions (IP) and energies ( E ) ,  while upper- case t e t t e ~ s  will be used 

for many- p a ~ t i c l e  wavefunctions (@) and energies (E). 

W e  first consider the smallest possible molecule, Hz, consisting of one 

electron plus two protons separated by a distance R. This system is 

sketched in Figure 1, where the two protons are denoted as a and b. 

Egure 2-1. Coordinates for &+ - 

2.1.1 LCAO Description 

Consider first the case with R = =. With the two protons infinitely far 

apart, the ground state is obtained by placing the electron in the 1s orbi- 

tal of one of the other of the two protons. This leads to the two states, 

and 

which are described by the wavefunctions, * 



and 

respectively, where xi and X, denote hydrogen is orbitals centered on the 

left and right protons. 

For finite R, the exact wavefunctions no longer have the atomic form, 

but useful approximate wavefunctions can be obtained by allowing the 

wavefunction to be a (linear) combination of the atomic orbitals in (2), 

This simple type of wavefunction is often referred to as LCAO for a linear 

combination of atomic orbitals. We will find that the optimum LCAO 

wavefunction is the symmetric combination, 

(where D, is a normalization factor). The other combination of the orbi- 

tals (5.3) is the antisymmetric combination, 

(D, is the normalization factor). 

The energies for the wavefunctions q, and (p, in (4) and (5) are shown 

as a function of R in Figure 2. Here we see that the g state is strongly 

* N is the normalization factor. 



Figure 2-2. The energies of the LCAO wavefunctions for HZf . 
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bonding (that is, the energy drops as the nuclei are brought together), 

while the u state is strongly antibonding (the energy increases as the 

nuclei are brought together). The objective of this section will be t o  

understand the origin of the bonding and antibonding charactered exhi- 

bited by the p, and p, states. 

First we consider the electron density, 

Integrating p i  over all space must give one electron 

<p;> = 1 

and similarly 

(recall that these are just the 1s orbitals of H atom). Thus (6) leads to 

where 

is called the o v e ~ l a p  of the two atomic orbitals. Consequently, the nor- 

malization condition in (4) is 

If there were no interference terms in (6), the density would be* 

The factor of 5 leads to the required condition <pd > = 1. 



but because of the interference terms the density near the bond mid- 

point is increased, as shown in Figure 3. This result has given rise to the 

prevalent idea that the chemical bond arises f r o m  the increase in the 

electron charge dens i ty  in the bond region. The idea is that an electron 

in between the nuclei attracts both nuclei, holding them together to form 

the chemical bond, 

p +  e- p +  (11) 

This reasoning is false as will now be demonstrated. The total potential 

energy is given by 

as sketched in Figure 4. 

Figure 2-4. The nuclear attraction potential V(r) for &+. 

as sketched in Figure 4. Here we see that the best place for the electron 

(i.e., lowest energy) is at a nucleus (T= = 0 or T~ = o), n o t  at the bond mid- 

point. From Figure 3 we observe that the increase in charge at the bond 

midpoint is at the expense of charge near the nucleus. Thus, in forming a 

bond, the charge is transferred from a low energy region (near the 

nucleus) to a high energy region (the bond midpoint), an effect that 

should operate against bond formation. Indeed, this is the case, as 

shown in Figure 5, where 
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Figure 2-6. Comparison of the (p, and (p, LCAO's of &+ with the hydrogen 
atom orbital, (p,, All wavefunctions have been normalized. 



is the total potential energy for the p, wavefunction. 

Our conclusion then is that transfer of eLectron c h a ~ g e  into the bond 

region leads to repulsive electrostatic interactions. The fact that the 

bonding state leads to such a transfer indicates that the origin of the 

bond lies in the other contribution to the energy, the kinetic energy, as 

will be discussed next. 

2.1.16 Kinetic Energy 

A qualitative prediction of changes in kinetic energy upon bond for- 

mation is easy. The kinetic energy is the (average) square of the gradient 

of the wavefunction, T = (h2/ 2m) c 1 Vq 1 2>. Superimposing two atomic orbi- 

tals symmetrically as in pg leads to a large dewease in the slope in the 

bond region (see Fig. 6), and hence a large decrease in the kinetic energy 

(see T' of F i g .  7) ,  

resulting in a strong bond. On the other hand, the antisyrnrnetric combi- 

nation in (P, leads to a large increase in the slope in the bond region (see 

Fig. 6) and hence the kinetic energy opposes bond formation (see T, of 

Fig. 7). 

The resulting total energies are given in Fig. 2, where we see that (P, 

is strongly bonding while p, is strongly antibonding. 

2.1.2 Bonding to p Orbitals 

Above we found that it is the change in the kinetic energy that dom- 

inates the energy changes in the LCAO description. Basically, if two 

atomic orbitals are superimposed so that no new nodal planes are 

created, as in Fig. 8a, then the kinetic energy drops significantly due to 



INTERNUCLEAR DISTANCE (BOHR) 

Figure 2-7. The changes in the total kinetic and potential energies for the 
g and u LCAO wavefunctions of &+. The actual values at R = - are 
T,(=) = T,(=) = + 5 and Y,(=) = VJ=) = -1. 
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Figure 2-8. (a,b) S m e t r i c  and antisymmetric superposition of 1s 
atomic orbitals. (c,dy Symmetric and antisymmetric superposition of 2h 
orbitals (oriented along the axis). 



the decrease in the gradient of the orbital in the internuclear region. 

This is a general phenomenon and depends only on the fact that in the 

bond region the gradients of the atomic orbitals are in opposite direc- 

tions (contragradient) so that (symmetric) superposition of the orbitals 

leads to a decrease in the gradients. 

Conversely, superposition of orbitals so as to lead to a new nodal 

plane, as in Fig. 8b, gives rise to much steeper gradients and a much 

larger kinetic energy, leading to  antibonding potential curves. 

These results are not limited to superimposing 1s orbitals. Consider, 

for example, a bond between p, orbitals on two atoms (assuming z to be 

the internuclear axis), as in Figure 9. The plus combination leads to a new 

nodal plane (higher gradients) and antibonding (see Fig. 8d), while the 

minus combination leads to lower grandients and bonding (see Fig. 8c). 

Similarly, bonding of the p, orbitals leads to Figure 10. Now the minus 

combination leads to a new nodal plane and antibonding, while the plus 

combination leads to bonding. 

2.1.3 The Optimum Distance for Bonds 

There is a natural optimum range for the effects that dominate bond- 

ing: 

i) If R is very large (near a), there is a large region in which the gra- 

dient is decreased; however, at each point, one or the other of the 

two orbitals has a very small gradient, so that the decrease in the 

gradient is very small (and goes to zero as R + =). The result is a 

small bonding contribution for large R. 

ii) If R is very small (near O), there is a large decrease in the gradient; 

however, the region of this large decrease is only the small region 

between the nuclei (which goes to zero as R + 0). [The latter effect is. 



Plus Combination Minus Combination 

Figure 2-9. Bonding between orbitals. (a) and (b) are schematic 
diagrams of the shape of the orbitals in the xz plane. (c) and (c )  are plots 
of the orbitals along the z axis. 

Plus Combination 

~,=P@+P, 

Minus Combination 

@- = P-+P, 

Figure 2-10. Bonding between orbitals. 



illustrated in Figure 11, where the left side is for R near optimum and 

the right side is for small R.] 

Thus the optimum bond is formed at an intermediate distance where the 

gradients are large and opposite (contragradient) for a large region. For 

the hydrogen 1s orbital, the optimum distance is about 2ao, which is just 

the sum of the atomic radii. For a p orbital, the optimum decrease in the 

gradient occurs when the outer lobes are separated significantly, as illus- 

trated in Fig. I lc. 

2.1.4 Symmetry Considerations 

The Hz+ molecule has a great deal of symmetry. In quantum mechan- 

ics, symmetry in the molecule generally leads to symmetry in the 

wavefunction, and knowledge of these symmetries can aid us both in solv- 

ing for the wavefunctions and in reasoning qualitatively about them. For 

the time being we will concern ourselves with only one of the symmetries 

in Hzf, namely, the inversion symmetry. 

2.1.4~ The Ham-iltonian 

First we need to consider the form of the Hamiltonian for H& Using 

the coordinate system of Figure 1,  the full Hamiltonian for Hi is 

We will simplify (13) by assuming the nuclear masses to be infinitely 

heavy (M, = Mb = w), by taking the nuclear charges as unity (as appropri- 

ate for H$) and by using atomic units (h = m = e = 1). This reduces (13) 

to 

W e  will group together all the terms depending upon the coordinates of 
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Figure 2-11. Illustration of the effect of R on the contragradience of orbi- 
tals. In each case the R for the left case is near optimum, while the R Ior 
the right case is too small. 



one (and only one) electron as 

(referred to as the onelectron Hamiltonian), where 

is the nuclear attraction term (arising from the attractive electron- 

nuclear interactions) . This leads to 

The exact (electronic) wavefunction of Hf is obtained by solving 

c? d l )  = Ep(1) . 
where H is given by (17). Substituting (17) into (18) and rearranging, we 

obtain 

where 

is referred to as the electronic energy. Although (19) may appear to  

involve only the electronic coordinates r, the internuclear coordinate R is 

involved implicitly since i t  determines the spacing of the attractive terms 

in v, (16). In solving for the wavefunction of Hz, we choose an R and solve 
L 

(19) to obtain the electronic wavefunction p(r) and the electronic energy 

E .  We then choose a new R and again solve ( I?), obtaining a new p(r) and a 

new E .  The result is an electronic wavefunction p(r) and an electronic 

energy E ,  each of which is parametrically dependent upon R. (This pro- 

cedure is referred to as the Born-Uppenheimer approximation.) 



2.1.4b Inversion Symmetry 

The operation of inversion through the origin of a coordinate system 

leads i'o the changes 

in the coordinates, and will be denoted as ?. 

Taking the origin of the coordinate systems as the bond midpoint in 

Fig. 1, the inversion of the coordinates of the electron leads to Figure 12. 

Figure 2-12. The effect of inverting the coordinates of the electron. 

The electron is now T, from the right nucleus (b) and T, from the left 

nucleus (a). However, since the nuclear charges are the same, the poten- 

tial terms in the Hamiltonian are the same. 

Upon inversion, the kinetic energy terms in a are also unchanged 

and hence the Hamiltonian is invariant upon inversion of the electronic 

coordinate (through the bond midpoint). 

Now consider that we have solved (18) to obtain eigenstates of H$, 
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and apply 7 t o  both sides of (22). The result is 

?(E?@) = E&) . 
which we could write as 

2(-r)v(-r) = Ep(-r) , 

indicating the result of inversion. But 3 is invariant under? 

8(-r) = H ( r )  

so that (24) becomes 

or 

Equations (22) and (26) state that q and Tcp are each eigenfunctions of 

exactly the same Hamiltonian with exactly the same energy. There are 

two possibilities here : 

(i) The state is nondegenerate, in which case Ip and p must be propor- 

tional to each other, or 

(ii) the state is degenerate, in which case Ip and p may be linearly 

independent* functions. 

First we consider that the state is nondegenerate. In this case 

where h is some constant. But, applying 7 twice leads to 

* i.e., not proportional. 



and thus must return the original function 

A 

?p(r)  = Jq(-r) = p(r) , 

whereas applying 7 to (27) leads to 

P p  = xip 
- 

and using (27) on the right side leads to 

?p = h2p . 

Combining (28) and (29) leads to 

9tr) = h2p(d 

leading to 

That is, nondegenerate states of H$ must be either symmetric under 

inversion (A = +I) or antisymmeCric (A = -1). Wavefunctions with these 

symmetries are denoted with g (for g e ~ a d e  or even in German) or u (for 

u n g e ~ a d e  or uneven), as in (p, or (p,. 

Consider now the case (ii) of a degenerate state with ?p n o t  propor- 

tionaltop. Wecanformtwonewfmctions, 

such that each function is still an eigenfunction of H (with the same 

energy) Hpg = Epg, HqU = E(pu but such that one function is gerade 

A 

1 VB = (Pg 1 

w u e  the other is ungerade 



A 

IP, = -5% . 

Thus, in this case also the eigenfunctions of H are g or u. f 

The same procedure can be used for higher degeneracies, and hence 

the conclusion is that for any fi invariant u n d e ~  invemion, each -en- 

state can be taken as either g o r  u. Examples are given in Figures $, 9, 

and 10. 

2.1.4~ 17ie Nodal Theorem 

An ungerade wavefunction for HJ necessarily must change sign at the 

plane passing through the bond midpoint. Consequently, from the nodal 

theorem we know that the ground state of Hz+ will be a g state.  * 

2 1.5 The Exchange Energy 

There is a direct relationship between the bonding observed in p, and 

the antibonding observed in v,, both being dominated by changes in 

kinetic energy as the bond is formed. We will now obtain an explicit form 

for this relationship. 

2.1.5a The aassical E w g y  

Consider first the wavefunction for H$ with no superimposition of 

atomic orbitals, 

We refer to t h s  as the classical wavefunction because it does not have 

7 If a certain state is doubly-degenerate with wavefunctions p, and pb, then start- 
ing with just one function, say p,, we generate both a g function and a u function, 
(Ppo = (pa + I (pa and pUa = (pa - I pa. If these functions are both nonzero, then (pb 
m11 be a linear combination of p,, and p,,, and nothing need be done with it. 
However, if pa were already g or u,-then pb is needed to generate the second func- 
tion. 

* Since there is no singularity at the nodal point, the inequality in the nodal 
theory applies, resulting in Eg < Eu. However, for R = m, even the u wavefunction 
is zero at  the midpoint, and hence the lowest g and u states are degenerate. 



interference effects arising from superposition of atomic orbitals. The 

energy of this wavefunction. 

Ed I 

is nonbonding, as shown in Figure 13. Using (17) we obtain 

where 

Thus 

where 

is repulsive. 

2.1.5b The Ezchange Ene~gy 

Now we consider the wavefunction p, with energy 

Since 

< 1 1 E 7 / i  + r >  = < L I E ? I L >  + < 1 1 A l r >  



0 
RELATIVE ENERGY (HARTRE€) 



we obtain 

where 

Similarly, 

where 7 is again given by (37). Thus the interference resulting from 

superimposing the X, and X, wavefunctions can be viewed as corrections 

upon the classical energy, 

where the correction terms 



are referred to as interference, exchange, or resonance terms. These 

energies are shown in Figure 13, where we see that &,t favors bond forrna- 

tion, while E: opposes bond formation. 

The classical energy,  as defined above, is the  total energy of the  sys- 

t e m  i f  the wavefunct ion is forced to r e m a i n  an atomic orbital as  R is 

decreased. The ezchange part  of the energy is the change in the energy 

due to the interference of XL and x,, that is, due to exchange of the elec- 

tron between the left and right centers. As shown in Figure 12, ccL is 

weakly antibonding, and hence bonding in the g state of Hz+ results from 

the exchange energy E,Z. On the other hand, the exchange term c$ for the 

u state is strongly repulsive, resulting in a strongly antibonding potential 

curve. 

These quantities E; and E: constitute a quantitative representation of 

the effects discussed qualitatively in 52.1.1. Thus, the decrease in finetic 

energy for the g states resulting from the decrease in the average gra- 

dient in the wavefunction yields a large negative contribution to T .  The 

increase in the po t en t i d  energy for the g state arising from the shift of 

charge from the nuclear to the bond region yields a positive contribution 

to T. The net result is a negative T, leading to a negative value for 

and a positive value for 

&: = - 7/ (1 - S) 

2.2.2.5~ Comparison of g and u S ta tes  

For large R, where the overlap S is nearly zero, we see that (40) leads 



so that the bonding in the g state and the antibonding in the u state are 

equal. 

However, for small R the (1 + S) and (1 - S) terms lead t o  asym- 

metry, where the antibonding state is several times more antibonding 

than the bonding state is bonding. Thus, at R = 2.5b = 1.32 8, , we have 

leading to 

whereas 

2.1.5d Andytic Results 

Explicit evaluation of the various quantities involved in the energy of 

Hg is carried out in Appendix A, leading to 

where terms of order e-3R are neglected. Thus for large R 



That is, the q u n t i t y  T dominating the bond in Hz+ is proportionaL to the 

overlap between the orbit&. A t  large R, this leads to a bond strength of 

the form 

thus the bond energy decreases exponentially with internuclear distance. 

This simple relation between bonding does not hold for small R. We 

saw above that r is a minimum (most negative) at R = 2 a ~ ,  and the total 

energy is also a minimum (bonding a maximum) around R = 2%. On the 

other hand, the overlap continues to increase as R is decreased until S = 

l a t R = 0 .  

2.1.5e Contragradience 

The above discussions indicate that the interference or exchange 

part of the kinetic energy dominates the bonding in HZ+ This term is 

dominated by 

tx = ?4[<(Vxr) + (V&)> - s <(Vxd2 >I 1 (44) 

which is large and negative in between the atoms. The region of space 

leading to negative Vxl VX, (and hence dominating the bond) is indicated 

for HO in Figure 14. 

2.1 .Sf Historical Development 

H. Hellmann [after escaping from Hitler Germany into Russia in 

-1 934 and before suddenly vanishing into Stalin Russia around 19371 was 

the first[ 2. Physik, 85, 180 (1933)] to suggest that bonding arises essen- 

tially from a decrease in kinetic energy. He suggested that the bond in 

H$ results basically because the electron is allowed to delocalize over the 



Figure 2-14. Contour plots of two hydrogen atomic orbitals for R = 2% 
(contour increment 0.05 a.u.). The shaded region leads to negative values 
of V x l  V% and hence to large contragradiefce. As a result; ths region 
dominates the bonding. 



region spanning two protons rather than just one. Using the uncertainty 

principle, he reasoned that a bigger "box" for the electron leads to a 

lower kinetic energy. Essentially the idea is as illustrated in Figure 15, 

where we see that for the cp, state the electron is distributed over a larger 

volume in Hi than in H atom. From the study of a particle-in-a-box, we 

know that the kinetic energy decreases as the box is made larger. Hence, 

because of a decrease in kinetic energy, the p, state is expected to be 

stabilized with respect to H atoms. 

On the other hand, since the p, state has a node in the middle, the 

energy is just the same as if we had put the electron in either of two 

boxes, each of which is smaller than for H atom. This leads to an increase 

in the kinetic energy. 

Hellmann presented only very simple qualitative ideas and his view of 

bonding was largely ignored until Klaus Ruedenberg [ Rev. Mod. Phys., 34, 

326 ( 1962)] provided a more quantitative framework, showing (for specific 

cases) that interference terms resulting from the superposition of ampli- 

tudes leads to a significant decrease in the kinetic energy. Indeed, most 

workers before Ruedenberg argued that the bonding results from elec- 

trostatic interactions arising from increasing the density in the bond 

region. The development in this chapter is derived from a series of 

papers by C. W. Wilson, Jr., and W. A. Goddard 111 [ Chem. Phys. Lett., 5,45 

(1970); Theor. Chim. Acta, 26, 195, 211 (1972)l. Other somewhat related 

viewpoints have also been proposed: M. J. Feinberg and K. Ruedenberg, J. 

Chem. Phys., 54, 1495 (1971); M. J. Feinberg, K. Ruedenberg, and E. L. 

Mehler, Advan. Quant. Chem., 5, 28 (1970); R. F. Bader and A. D. Bau- 

draut, J.  Chem. Phys., 49, 1653 (1968). 



z COORDINATE (BOHR) 

Figure 2-15. Illustration oi the differences in the effective size of the box 
for the electron in the hydrogen atom and in the g and u states of &+. 



2.2 The Molecular Orbital Description of & 

We will now add a second electron to  Hzf t o  obtain the Hz molecule. 

The simplest wavefunction for Hz is to start with an electron in the best 

molecular orbital of Hzf and to place a second electron in this p, orbital. 

This leads to the molecular orbital (MO) wavefunction for Hz, 

where 

cPg = (x1 + x r ) / D g  1 

and 

With two electrons, the total wavefunction @(rl.r2) must specify the proba- 

bility amplitude for electron 1 to have each possible value of its three 

coordinates (x,, y,, and zl ,  symbolized collectively as rl), and for electron 

2 to have each possible value of its three coordinates (x2, yz, and zz, sym- 

bolized collectively as r2) Thus, the wavefunction must be specified for 

all six simultaneous components of rl and rz as in (1). 

First we will examine the meaning of the wavefunction (1). The total 

probability for electron 1 to be at some position r,, while electron 2 is 

simultaneously at some position r2 is 

P(r,.rz) = l QMO(r, 1r2) 1 = l pg(rl) 1 l pg(r2) 1 = Pgtrl)Pg(r2) . (3) 

This is just the product of the independent probabilities for electron 1 to 

be at  position r, and electron 2 to be at position r2. Thus, the probability 

distribution for electron 1 is independent of electron 2. * Summarizing, a 

product wavefiLnction as in ( 1 )  implies that the electrons move indepen- 

dently of each other (no correlations in their motions) and vice versa. 

Consider the analogous case of a red die (electron 1) and a green die (electron 



In addition to using the pg MMO as in ( 2 ) )  we can construct wavefunc- 

tions of He using the p, MO, 

This leads to wavefunctions of the form 

Since the pU orbital is antibonding, the above wavefunctions of H2 lead to  

much higher energies than (1) (except a t  large R), and we expect an 

energy level diagram as in Figure 16. 

Figure 2-16. Simple energy diagram for MO wavefunctions of &. 

2.2.1 Energies 

For H, we use the coordinate system of Figure 17. 

2). The probability of rolling a red 3 is 1/6 and the probability of rolling a green 5 
is 1/6 so that the total probability of getting both a red 3 and a green 5 is 
-X -= - The dice are  independent so that the probabilities multiply. 
6 6 36 '  



Figure 2-17. Coordinates for &. 

Using the same conventions and assumptions as for Hz leads to the Ham- 

iltonian 

where is the Coulomb interaction between the two electrons, and 
r12 

where 

1 1 h(i) = -)$vf - - - - 
rai =In 

contains all terms depending only upon the coordinates of electron i. 

Consider now the energy of a product wavefunction 

aa( l .2 )  = (~s( l ) (~b(2)  (10) 

and note that many two-electron integrals factor into products of one- 

electron integrals, e.g., * 

* Note that the < > notation implies integration over however many electrons 
are in the wavefunction. 



since <(pa 1 pa> = 1. In order to simplify the energy expressions, we will 

define 

hij - <qilhlpj> . (12) 

The integral that does not factor is the one arising from the 1/r12 

terms in the Harniltonian, which we will denote as 

Note that 

= ~i*(l)c~itl) (144 

is the probablity density for finding the electron in orbital i at position r,, 

and 

is the probability density for finding the electron in orbital j at position 

12. Thus we can rewrite (13) as 

But (15) is just the classical electrostatic interaction energy (the 

Coulomb energy) between the two charge distributions pi and pj. Thus we 

refer to Jjj as the Coulomb integral between orbitals pj and pj. This term 

cannot be factored into a product of one-electron terms because of the 

term. 

1 

Since pi, pj, and '- are always positive, we see that the Coulomb 
rij 

integral is always positive 



Using the above results we can write 

For R = 2% = 1.06 A (the R, for H$), the MO wavefunctions lead to 

Juu = 

resulting in 

Thus the MO states are ordered as in Fig. 16. Note here that the Coulomb 

interactions are not negligible, but nonetheless, overall ordering of states 



can be predicted solely from considering the one-electron terms. 

2.2.2 Symmetries 

Before pr~ceeding further in the discussion of Hz, we will examine 

how symmetry can help us in sorting out the states. 

Starting with the configuration of particles in Figure 17 and invert- 

ing* the coordinates of electron 1 leads to Figure 18a, 

Figure 2-18. 

with electron 1 at a distance of rbl from nucleus a and r,l from b). Just as 

for H$, this does not change the nuclear attraction terms if the nuclei 

have identical charges. Even so, the total potential energy is changed 

since the distance between electrons 1 and 2 is changed. Thus, in order 

to preserve the same potential energy, we must simultaneously invert 

the coordinates of both electrons, leading to Figure 18. Thus we define 

the inversion operator, 7, for Hz as 

* Recall that the center of inversion is the bond midpoint. 



x1 -) -XI x2 -) -X2 

Y i  -'-Y1 and y2 -, -y2 

21 + -21 z2 -+ -22 

r l  + -rl and rz 4 -rz , 

and the total Hamiltonian is invariant under this inversion, 

A A 

IH(rl.r2) = r . r = A(r,, r2) . 

The exact wavefunction for Hz is obtained by solving 

(don't panic; we won't try this yet). Since k(1,2) is invariant under the 

inversion 7 (25), we find that (26) implies 

and hence (just as for H$), the exact eigenstates of H2 are either g or u, 

Applying the 'I- operator to  the MO wavefunctions (I),  (5)-(7) leads t o  

the conclusion that 

@, and 9, are g states 

and 

Q,, and @, are u states. 

Since a u wavefunction must always have a nodal plane, somewhere we 

expect the ground state of Hz to  be g, just as indicated by Figure 16. 

2.2.2b PemnutaCional Symmetry 



The Hamiltonian for H2 is unchanged if we renumber the electrons so 

that electron 1 becomes electron 2 and vice versa, that is, 

E?(2,1) = k(1,2) . (30) 

To discuss such symmetries we define the transposition operator T~~ as 

r l  -) r 2  and r 2  + rl . (31) 

Thus, starting with the exact wavefunction (26), applying t o  both sides, 

and using (30), we find that 

~ ( T ~ ~ Q )  = E ( T ~ ~ @ )  . (32) 

Since (r12~transposes the electrons twice, taking us back to the original 

starting point, 

[where e signifies doing nothing, i.e., the unity or  einheit (German) opera- 

tor], we can show (just as for inversion) that the exact eigenstates have 

the behavior 

under transposition. Examining the wavefunctions (I) ,  (5)-(7), we see 

that 

7 1 2 [ ~ g ( l ) ~ g  (211 = [ ( ~ g ( l ) ~ p  (211 symmetric (354 

) no symmetry 

~ 1 2 [ ( ~ U ( 1 ) ( ~ u ( 2 ) 1  = [ ( P U ( ~ ) % ( ~ ) I  symmetric . 
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Thus the g states, ipgg and @,, have the proper permutational symmetry, 

but the u states, a, and @,, do not. In the next section we will fix up this 

problem with the u states. 

2.2.2~ The 2t States 

Combining the u wavefunctions as follows* 

= ( ~ ~ 5 %  - Pupg) 

leads to 

so that the combinations (36) and (37) have proper permutational sym- 

metry. 

Now we must examine the physics behind the combinations (36) and 

(37). Aside from mathematical analyses indicating that the wavefunc- 

tions s h o d d  have permutational symmetry, we also want to determine 

why one combination is favored in terms of achieving a lower energy. 

In order to carry out such an analysis, we will plot the two-electron 

wavefunction for the case where both electrons 1 and 2 are along the 

bond axis (2). In order to show the relative locations of both electrons, 

we will let the z coordinate of electron 1 be the ordinate (zl) and the z 

coordinate of electron 2 be the abscissa ( z z ) .  This is indicated in Figure 

19 where some special points are indicated. 

The notation will become clear when we discuss spin in Chapter 4. 
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Figure 2-19. Coordinates showing sim.u1taneous positions for z, and Zl. 

In order to  see how to plot the wavefunction on Figure 19, consider the 

orbitals p, (2,) and (p, (z2) in Figure 20ab. 

Figure 2-20. 



Multiplying these orbitals leads to the wavefunction *,(z,. z2) with ampli- 

tudes at various points, as given in Figure 20c. Rather than listing 

numbers as in Figure 20c, we will draw contours of equal amplitude as 

indicated in Figure 20d, where solid lines indicate positive amplitude, dot- 

ted lines indicate negative amplitude, and long dashes indicate zero 

amplitude. Here one sees that the maximum positive amplitudes occur 

for z2 = a and zl = a or b, while the amplitude remains large or positive 

between the above two points. The maximum negative amplitude occurs 

for z2 = b and z, = a or b and remains large between the above two points. 

For zz = 0, the total wavefunction is zero, independent of 2,. The reader 

should practice constructi directly from Figures 20a and 20b 

(without going through Fig. 20c). 

In Figure 21 we compare the two-electron wavefunctions of Bg,, 0,, 

'a,, and I@,. All cases involve a single nodal plane, and if there were no 

electron-electron interactions, all these wavefunctions would have the 

same total energy. * The difference lies in the electron-electron interac- 

tions. In Figure 2 1 e we see that the 'Q, wavefunction is zero along the 

line with zl = z2, whereas in Figure 2lf we see that the largest values 

(positive and negative) of I@, occur for zl = 22. Since the electron repul- 

sion term 

is large and repulsive when the electrons are close, we see that 3Q, is 

favored and lau is disfavored. Indeed, considering all possible combina- 

tions of @, and ip,, the one with the lowest electron repulsion is just %,. 

Note from (18) that both u states have the same total energy and that  any corn- 
bination of these states leads to the same one-electron energy. bu + hgg. , 



Figure 2-21- 



Thus the energy diagram for the MO wavefunctions of H2 becomes as 

in Figure 22. 

double excitation ~~u(Pu = @UU 

ground state = @gg 

Figure 2-22. 

2.2.2d QuantitaCive Aspects of the Ene~gies  for the u States 

Now that we see the physics behind why the 3@u wavefunction (36) is 

the best u state, we will examine the quantitative energy expression. 

Since 

<gulh(Z)lug> = <glu><ulhlg> = 0 . 
we are left with 

where 



where this two-electron term is called the exchange integral between 

orbitals pg and p,. The net result is 

E('aU) = Egu + K, . 

Since the previous section showed tnat 

we see that the exchange integral must be positive, 

What is the physical significance of Kg,? I t  tells us how much the 

two-electron energy changes when we go from the wavefunctions in Fig- 

ure 21 c or 21d to the wavefunctions in Figure 21e or 21f. Thus the K,  is 

the quantitative representation of our earlier argument that has a 

better two-electron energy than 'Qu. I t  is better by precisely 2Ke. 

Another way to look a t  this is t o  substitute (17) into (40), leading to 

Here J, - Kgu is the total two-electron energy of Figure 21f, while Jgu + K, 

is the total two-electron energy of Figure 21e, and Jp is the two-electron 

energy of Figure 2 l c  and 21d. The two-electron energy of 3@, can also be 

written as 

where * 



1 3~,(1,2) = 23$,*(~,2) 3@u(1.2) . 

Since 3 ~ u  is the absolute square of it  is positive for all possible values 

of r l  and ra. Since the integral in (44) is always positive, we see that the 

total two-electron energy of the 3@, state must be positive 

and hence 

the exchange integral is always less than the Coulomb integral. Combin- 

ing (46) with (16) leads then to* 

22.3 Potential Curves 

So far we have discussed the MO wavefunction assuming that the 

bonding orbital p, is much better than the antibonding orbital p,. This is 

true for shorter internuclear distances R but does not remain true as the 

bond is broken. Thus, in Figure 23 we compare the energy of the MO 

wavefunction Qgg with the exact energy for the ground state of H,. This 

MO wavefunction leads to a good value for the bond length but a very bad 

description of the processes of breaking the bond. 

The origin of tfus problem can be seen by substituting the atomic 

orbital describtion of the M 0  (2) into the MO wavefunction (I) ,  leading to 

- - @covalent + @ionic 8 

where N = [2(1 + S)]-I and 

* This relation is true far any pairs of orbitals, as shown in Appendix 2-C. , 
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A t  very large R, the exact wavefunction will have one electron near the 

left proton and one at  the right, as in (49), which we will refer to as the 

covalent part of the wavefunction. The other terms of (48) have both 

electrons near one proton and none near the other, thus an ionic 

wavefunction. A t  R = =, these ionic terms lead to the energy of H- and H+ 

rather than the energy of two hydrogen atoms. Since the MO wavefunc- 

tion must have equal covalent and ionic contributions, it yields terrible 

energies for large R. 

The basic problem with the MO wavef unction is that both electrons 

are in the same pg orbital and hence each electron has an equal probabil- 

ity of being on either center, regardless of the instantaneous location of 

the other electron. In the exact wavefunction, the motions of the elec- 

trons tend to be correlated so that if one electron is on the left, the other 

tends to be on the right. This correlation is necessarily ignored in the MO 

wavefunction, and the resulting error is often referred t o  as the correla- 

tion error. For small R, the two centers are close to each other and this 

neglect of correlation is not so important. A t  R = =, however, the correla- 

tion of electrons is of paramount importance and neglect of correlation 

leads t o  ludicrously poor wavefunctions. 

In the next section we will discuss a simple wavefunction, the valence 

bond wavefunction, that eliminates this problem of describing large R. 
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2.3 The Valence Bond Description of 

2.3.1 The Covalent States 

We will now reexamine the ground state of He molecule. However, 

rather than the approach of the above section (plopping electrons one by 

one into the orbitals of H$), we will instead start with the exact wavefunc- 

tion at R = m. This, of course, consists of two hydrogen atoms infinitely 

far apart, say electron 1 on the left and electron 2 on the right as in Fig- 

ure 24. 

Figure 2-24. 

The wavefunc tion for Figure 24 is 

where 

%(r2) = N eqb2 

(and N is the normalization factor). 

This wavefunction @a says that the probability of electron 1 being at a 

particular position is independent of where electron 2 is and vice versa 

(since the atoms are infinitely far apart, the electrons should not be 

influenced by each other). 

There is a second wavefunction that is just as good (or as bad) as !Pa 

in (I) ,  namely, 



(a) *a(l, 2) = xf(l)x,(2) @) +b(l , 2, = X* (I)x (2) 

b 

Figure 2-25. 



where the electrons have been interchanged. Ths wavefunction Qlb is 

different from Qa since electron 1 is on the opposite sides of the universe; 

however, the energies of @b and Qa must be the same (since electrons 1 

and 2 have the same properties). 

We will find it useful to combine a, and mb into two new wavefunc- 

tions, 

(unnormalized) because a t  finite R these are the optimum wavefunctions. 

Before examining the energies, we need to understand how to thmk about 

the relative locations of the electrons in these wavefunctions. 

In Figure 25, we plot the four wavefunctions, Qa , Qb , Qg , and iP, . Here 

we see that BU has a nodal plane (coresponding to 2 ,  = z2)  while Q, does 

not. Indeed, along the line between the two peaks in Figure 25c, we see 

that the gradient of the ip, wavefunction is smaller than that of Q, or Q b ,  

while the gradient of the Q, wavefunction is larger. This decrease in the 

gradient of iP, (and increase for Q,) depends upon R with a bigger effect 

for smaller R; thus, based on lanetic energy, we would expect that Q, is 

bonding and mu is antibonding, and indeed this is the case, as shown in 

Figure 26. 

Inversion of the coordin.ates of the electrons r,, e r b l  and raz + rbz 

leads to [see (2)] 



{NTERNUCLEAR DISTANCE (BOHR) 

Figure 2-26. The energies E, and E, for the valence bond wavefunctions of 
&. 

INTERNUCLEAR DISTANCE (BOHR ) 

Figure 2-27. The energy of the MO wavefunction for the ground s ta te  of & 
with comparison to the VB and exact energies. 



Consequently, 

As a result, 

A 

I * ,  = I (@,  4,) = @, -a,  = -a, , 

and we see that @, and Q, are indeed gerade and ungerade, respectively. 

2.3.3 Comparison of VB and MO Wavefunctions 

2.3.3~ Ground State 

The MO wavefunction is (ignoring normalization) 

@i0(1.2) = = [XI& + xrx1I + [xlxl + xrxrl I 

whereas the VB wavefunction is 

The energies for these wavefunctions are compared in Figure 27 where we 

see that the VB is always better but that the difference becomes negligi- 

ble for small R. 



- Figure 2-28. 

The wavefunctions are compared in Figure 28, showing graphically 

how the VB wavefunction has smaller probability of having zl = z2, leading 

to lower electron repulsion energies. On the other hand, the MO 

wavefunction is smoother, leading to smaller kinetic energies. For nor- 

mal bond distances, the electron repulsion effects dominate so that the 

VB wavefunction is better. However, for very short R, the kinetic energy 

becomes dominant so that the MO and VB wavefunctions lead to nearly 

identical total energies. 

2.3.3b 7he u States 

Expanding the MO1s in terms of AO's (and ignoring normalization) 

leads t o  

Thus 



lau = . g u + u g  = Z(U - rr) = *:ON , (7) 

That is, the first excited state in the MO description, %,, is identical t o  

the first excited state in the VB description. Both describe a covalent 

repulsive state that separates to two free H atoms, as indicated in Figure 

29. 

The second state, la,, leads for R = - to the wavefunctions X,X, 

corresponding to 

H- H+ 
and x r ~  corresponding t o  

Thus we refer to this state as the ionic state. The energy curve is shown 

in Figure 29. 

2 .3 .3~  The Secmd  g Sta te  

In the MO description* 

@Zo = (l - ( 1  - r) = [(U + rr) - (Ir + rl)]/ 2(1 - S) 

(8) 
@go = (l + ( 1  + r) = [(ll + rr) + ( l r  + rl)]/ 2(1 + S) . 

In contrast, the VB description leads to* 

and 

@;ON = (ZZ + rr) / J2(1 + s2) 

for the covalent and ionic g states. 

The connections between these states are 

* Now we include normalization factors. 



= (x,x, + x,x,) long R CI 

Limit 
H+, H- 

Limit 
H, H 

2 -0 4.0 6.0 8.0 
INTERNUCLEAR DISTANCE (BOHR) 

Figure 2-29. Energies for the states of I&, using atomic orbitals 
(< = 1.0). 



where 

Thus we can fix up the M0 wavefunction so that it behaves like the VB 

wavefunction by mixing together the @go and @go wavefunctions. This is 

related to the configuration interaction (CI) wavefunction. as discussed 

below. For large R, S = 0 so that X = 1, whereas for R = 1.6% = 0.8 1 , S = 

0.7, leading to h = 0.18. Thus the CI is most important at larger R. 

For a more general description of these states, we would consider the 

wavefunction to have the form 

and choose the coefficients that lead to the best energy. This is called 

the configuration interaction or CI wavefunction and leads to the results 

shown in Figure 29. The excited g state. 42;. can also be taken to have the 

form (12); however, it must be orthogonal to @g, leading to 

The overlap between the covalent and ionic g states is 

* Equations (12a) and (12b) lead t o  an equivalent total wavefunction, as can be 
seen by comparing (8) and (9). 



Thus, for S = 0.7 (R = 1 . 6 ~  = 0.8 A ) this overlap is 0.95, demonstrating 

just how similar are the ionic and covalent wavefunctions for small R. This 

creates a problem in describing the excited g state. The VB wavefunction 

is a close approximation to the @fl wavefunction; however, except for S 2 

0, the $,'ON wavefunction is not a good approximation to the excited state, 

a&. Instead, we must orthogonalize @:ON to @FV, leading to new nodal 

planes and a much higher energy. This explains why the @&! state is 

always above the @foN state. Based on the nodal theorem, we would 

expect that @LON (which has no nodal planes) would have a lower energy 

than @:ON, and it does. However, the only nodeless state is the ground 

state cP,, which mixes whatever combination of @gCOV and @;ON gives the best 

energy. The excited g state, @#;, necessarily has nodal surfaces since i t  

must be orthogonal to the ground state. The result is that the ionic g 

state, ipg, is always above the ionic u state. 

23.4 Quantitative Analysis of Bonding in & 

We will analyze the energies of the VB wavefunctions for the g and u 

states of Hz in a manner very similar to that used for the LCAO wavefunc- 

tion of the g and u states of Hz+. 

First we consider the energy of the simple product wavefunction 

which is just part of the wavefunction for the g and u states, (4a) and 

(4b). We will refer to this wavefunction as the classical wavefunction and 
- 

the energy 



as the classical energy. 

The total energy of Hz differs from the classical energy due to the 

presence of a second term in the wavefunctions (4a) and (4b). The 

second term has the electrons interchanged (exchanged) and hence is 

called the exchange term. 

The effect of the exchange term in the wavefunction, say @a), is to 

change the energy from Eci to E,. We will refer to thls change in energy 

as the exchange energy Et, so that 

In Figure 30 we show the behavior of these quantities with R. Just as for 

H2+, we see that it is the ezchange t e r n  that dominates the bonding 

energy. Indeed, we will find that it  is the one-electron part of the 

exchange terms that provides the dominant interaction, just as for H$. 

First we consider the detailed form of the various energy quantities. 

2.3.4a Analysis of ESL 

A t  large R, the one-electron term - - 
atomic energy penetration term 

has the form 

1 hn a 81s - - R * ( 17) 

Neglecting terms of order e-*, and the Coulomb term has the form 



INTERNUCLEAR DISTANCE (BOHR) 

Figure 2-30. The classical (Ed), exchange (E?), and total (E) energies for 
the VB wavefunctions of I&. Note that each energy is references to the 
value for R = m, that is, @(=) = %(=) = %(=) = -1.0 and Gym) = Gym) = 
n n 

l NTERNUCLEAR Dl STANCE (BOHR) 

Figure 2-31. The total 
two-electron (+2) parts 
also shown. All results 

exchange term (T) 
. The potential (r,) 
are for &. 

and 
and 

the one-electron 
kinetic (?=) parts 

and 
are 



(neglecting terms of order e-2R). Thus the classical term is just twice the 

energy of an H atom (F lJ, 

E~~ 2~~~ 

(neglecting terms of order e-*), with no net Coulomb terms. Including 

the additional penetration terms leads to 

corresponding to the interpenetration of the two atomic electron clouds. 

Although negative for R > 1 .4ao, this quantity is small, as shown in Figure 

30. Thus the bonding of H2 cannot be explained as due to penetration of 

the chzrge clouds of two hydrogen atoms. 

2.3.4b me Ezchange Terms 

Now we consider the energy of @,CW, (4a), 

and 

Hence 

Evaluating the individual terms, we find 



= 1+s2 
and 

where 

g' ' ~x1xrlG lxrxl> 

is ref erred to as the VB exchange term. Thus 

where the exchange energy is 

The same analysis for the @? wavefunction (4b) leads to 

where 

The close relationship between Et and is emphasized by definingt 

t = (& - s2 ES') (24) 

so that 



From (25) and (26) the energy separation between the g and u states is 

From the nodal theorem, E, < &, and hence 

since S < 1. 

These results for Hz are quite analogous to the case of Hz+ where the 

(P, and p, state have energies 

with 

T = br - Shr . 

2.3.4~ Analysis of 6 
The components of@ (19) are 

* W e  use 7 here in order to distinguish this quantity for H2 from the T of Hz. 



where S is the overlap and &, is referred to as an exchange integral. 

(Note the distinction between p, the VB exchange t m ,  and &,, the 

exchang e integral .) Thus, 

Analysis of 7 

Using ECL from ( 15) in (24), we find that 

7 = TI  +T2 , 

where 

7 2  = [&r - S2JirI (37) 

are the one- and two-electron parts, respectively. * These quantities are 

plotted in Figure 31 where we see that T2 has a smaller magnitude that 7,. 

Thus we can write 

f w r ,  

Comparing (27) and (31a) we see that 

- 
T l  = 257 , 

1 
+ The -terms cancel. R 



that is, the o k -  eLecCronpmt o f t  for Ha is related directly to the T of Hz+, 

leading to 

where T is the quantity for H;. Thus, for H2 the bonding energy is deter- 

mined by 

whereas for Hz+ it is determined by 

These quantities are compared in Figure 32. 

I NTERNUCLEAR DlSJANCE (BOHR) 

Figure 2-32. The exchange energies ( E x  and G) for &+ and &. In addition, 
the one-electron approximation EF to tfie F for is shown for each state. 



2.3.4e Analysis o f f ,  = 251 

Since. the quantities f ,  and T dominating the bonding in H2 and H2+ are 

related, 

it is well to examine the reasons for these relations. The wavefunctions 

for the bonding states of H2 and H2f are sketched in Figure 33ab. In both 

cases the kinetic energy is decreased from that in the classical wavefunc- 

tions, Figure 33cd. The decrease in the kinetic energy for electron 1 is 

obtained by examining the gradients in the vertical direction (ordmate) 

of Figure 33abcd. Here we see that Hz leads to a larger decrease that HE. 

Thus the contribution is ST for Hz but r for Hz+. However, for He there is a 

second electron (number 2) that has a similar decrease. Thus, for Hz the 

net is 2% as compared to r for Hz+. 

Figure 2-33. 



2.3.45 Comparison of Bonding in H2 and H$ 

Although the bonding energies of H2 and Hz are both determined by 

7, we see from (41)-(44) that the value of the overlap S also plays an 

important role. From 2.1 the form of T at large R is 

hence 

Thus the bonding in Hz+ is proportional to S, but the bonding in H2 is pro- 

portional to the square of S. 

A t  R = 1.6ao, the value of S is 

and hence 

Thus the g state of Hz should have a bond energy about 50% larger than 

the g state of HJ, while the u state of He should be 17% less repulsive than 

the u state of Hz+ In addition, we see that the u state of Hz should be 

about three times as repulsive as the g state is attractive. 

A t  R = 3 ~ ,  the overlap is S = 0.1 and hence we obtain 



E; = -1.11 7 . 

Thus, at this large R, the g and u states of Hz are five times as attractive 

or repulsive as the g and u states of Ha That is, at l w g e  R, the one- 

electron bond is much stronger than the two- electron bond! This 

difference in relative bond strengths of Hz and Hz+ for small and large R 

just results from the overlap term S that automatically arises in the 

exchange of a two-electron wavefunction. 

In the limit that S = 1, we have* 

Hi: &p. = H T ,  

leading to an H2 bond twice that of Hi, the commonly expected result. 

PROBEM: Experimentally (and theoretically), the molecules Li;, NG, &+, 

with one-electron bonds, are found to have s h n g e r  bonds than the 

correspondq molecules &, NQ, & having two-electron bonds. Explain 

the origin of this effect. 

Actually, S = 1 implies R = 0, which in turn implies T = 0. 



APPENDIX 2-A: ENERGY QUANTITIES FOR H: 

We will consider an atomic orbital of the form 

centered at each of the two nuclei of HZ. The coordinates a r e  indicated in 

Figure 34. 

Figure 2-34. 

With 5 = :I the orbitals (1) correspond to hydrogen is orbitals on each center. 

Firs t  we evaluate the atomic integrals for general c ,  then the new 

energy quantities occurring in H:. 

2-A.1 Atomic Energy Quantities 

The norm of x is 
27T 60 T 2 ( X I  X) = (r3/7r) s i n 0 d e  d p  r dr  e - 2 9  

where we se t  p = 2Cr and used 



Similarly the atomic potential energy is 

and the kinetic energy is 

In evaluating the energy quantities for diatomic molecules, it is 

convenient to use elliptic coordinates 

rp = azimuthal angle about the z axis (measured 

from the .xz plane) 

in place of the cylindrical polar coordinates p , q, z (see Fig, 34b) or 

spherical coordinates r, 0 , rp.' (See Fig. 34b.) The geometric condition 

defining an ellipse is that the sum of the distances to'the two foci is a conBtant, 

and hence each curve of constant 5 corresponds to an ellipse. Similarly 

from the defining condition for a hyperbola,each surface of constant q correspo& 

to a hyperbola. The range of the elliptic coordinates is 



The volume increments in the various coordinate systems a re  

The latter relationship can be derived from 

x = i ~ \ I m  c o s p  

4 2 -  s i n p  Y = ~ R  (5 1 ) ( 1 - 3 1 )  

z = + R ( ~ I  
3 2  2 

since the Jacobian ;R ((5 - q ) is just the determinant of the derivative 

matrix. 

From Fig. 34b we see t b t  

and hence 

and 
2 2 

= 2 z R .  a 

From (4) we find 
2 2 

+(f2 + + ) = (ra t r; )/R~ 

2 2 

Ss = (ra - rb )/R~ 
2 2 2 

5 - q  =4rarb/R 



and hence 

These relations will be useful in the next section. 

In evaluating integrals over 5 the following integral will be 

useful 

For x, = 1 and m = 0,1, and 2 this becomes 

2-A.3 Diatomic Energy Quantities 

2-A.3a Overlar, Integral 

First we evaluate the overlap integral, 

Using (I), (6), (1 1) and (13), this becomes 

2-A.3b The Exchange Potential Energy Term 

There a r e  two terms involved in evaluating the potential energy 

of ~ , f ,  the exchange terms 



where 

and 

In this section we evaluate VQr. 

Firs t  we convert to elliptic coordinates 

using (4) and (9). Combining (18) with (6) leads ta 

h 2 
~ d 7  = - *R ( ddf dv dp , 

and integrating over p we obtain 

A. 3c The Penetration Term 

The other potential energy term Val  has two parts 

the first  of which 



is a one center integral (involving only the left nucleus) and the other 

of which 

involves two centers, This second term is the Coulomb interaction 
2 

between the spherically symmetric charge distribution pe = I X~ I 
centered on the left nucleus with the charge centered a t  the right 

nucleus and is referred to as the penetration integral. 

A s  shown in  equation 8 of Appendix B 

where 

and 

Using 

we obtain 

Using (10) we obtain 



and hence * 

2 - A 3 d  The Kinetic Energy Term 

The two-center kinetic energy integral is 

which from Appendix 1-A becomes 

Since 

we obtain 

(where Sx denotes a unit vector in  the x direction). 

Hence 

Using (6), (8), and (9) we obtain 



Integrating over rp and substituting into (26) leads to 

2 -A. 4 Summarv 

Collecting together the quantities of the previous sections 

we have 

2-A.5 Qualitative Examination of Diatomic Quantities 

The amplitude of X, evaluated a t  the left nucleus is 

while the amplitude of at the left nucleus is 



Thus 

If were highly concentrated about the  left nucleus the overlap would 

be given by 

S = e  - CR 

Comparing with the correct formula (14) we see that the approximate 

form (30) has the correct exponential behavior on R but the numerical 

coefficient in (30) is correct only for R = 0. Using R = 2. Oa, and 

= 1.0 in (14) leads to a coefficient of 3.33 and using R = 6. Oa, leads 

to a coefficient of 19.0, many times the value obtained with (30). 



APPENDIX 2-.B. THE LEGENDRE EXPANSION 

Consider a system such as in Fig. 34. It is often necessary to 

convert expressions involving say the distance of the electron from 

nucleus b over to  a new expression involving the distance of the electron 

from nuc leus a, as indic ated in Fig. 3 5 . 

Figure 2- 35. 

The relation between these coordinates is 

A case of particular importance is to convert l/rb over to the new 

coordinates. This leads to  

where p = ~ / r ~ .  If p < 1 the .radical in (2) can be expanded a s  

1 = p P ~ f ( ~ ~ ~ e )  , 
J1 + p - 2 p COS 0 f=O 

where the Pg (cos 8 )  are the Legendre polynomials 

Po (cos 8 )  = 1 

P, (cos 8 )  = sin 8 

P, (COS e )  = 4 (3 c o s 2 e  - 1) 



Thus (2) becomes 

where r and r denote the lesser and greater, respectively, of ra and R. 
( ) 

If there is a spherically symmetric charge distribution pa(r,) 

centered at a, then the total electrostatic interaction with a charge centered 

at b is 

where we integrated over the rp coordinate. The Legendre polynomials 

have the property that 

so that (6) becomes 

The quantity 

is the amount of charge within the sphere centered at a and passing 

through be The contribution of this charge to V is just the same as if 

all this charge were concentrated at a. 



The quantity 

2 
' Q  = 4 n r a  pa(ra) Bra 

is the amount of charge on a sphere of radius ra and thickness b r  The a* 
potential within such a uniformly charged sphere is constant and equal to 

1 
2- 6 Q as implied by the second term of (8). 
ra 



Appendix 2- C Coulomb and Exchange Integrals 

In § 2.4 we indicated that 

J.. 2 K.. 2 0 
1J 1J 

These relationships a r e  derived below 

(a) Ji. 3 0. 

The Coulomb integral is 

Since the integrand is positive for all  values of r, and:,, the integral 

must be positive. This integral is also denoted as 

where the orbitals on the left a r e  for electron 1 and those on the right 

a r e  for electron 2. 

The exchange integral is 

To prove that K g .  3 0 we set  
13 



= tj + iqj 

where Z i ,  q i ,  5j , and q. a r e  real .  This substitution leads to 
3 

We now define the charge distributions p, and p, as 

This leads to 

and hence 

- 
To show that J.. >, K.. we consider the wavefunction 

1J 13 

*(I,') = @i+j  - +j @i 

The electron-electron interaction energy for this state is 



since the integrand is pos itive everywhere. Substituting the wavefunction 

(1) leads to  
1 - = 2(Jij - Kij) 
r12 

and hence 

J.. 2 K.. * 
13 1J 

Expression (2) provides the physical significance of Yj. It is the change 

in electron repulsion energy upon superimposing both products of orthogonal 
I orbitals +i@j. That is, the wavefunctions -[@.@. * @.$.I lead to Coulomb 

1 J  J 1  

repulsion energies of 



Appendix 2-IL Two-Electron Integrals for H, 

2-D. 1 The Coulomb integral, Jpr 

The Coulomb integral, JQr has the form 

where x1 and xr  a r e  1s atomic orbitals centered on the left and 

right protons . Letting 

we have 

J,, = Jd72 Jf (2) X;(2) Xr(2) 

In the remainder of this section we will assume xp and xr  a re  real. 
1 Zirst we evaluate JQ by expanding - as 

r12 

(the Laplace expansion) where r,, is the distance between the points 

with spherical coordinates (r,, 01, c ~ , )  and (r2, 02, q 2) . 

Note that both ri and r, a r e  with respect' to the left-hand center. 



Since xp  is spherically symmetric (about center 1) the integrals over 

0, and @, will be nonzero only when k = m = 0 

Breaking the interval of integration to remove the r> yields, 

Letting 

we find 

Now we must change to elliptic coordinates in order to evaluate the 

integral over the coordinates of electron 2. 

Using elliptical coordinates and q (see Appendix 2-A) 

in (8) and (3), we f i n d  



Evaluating these elementary integrals gives the following result 



2 -D. 2 The Exchange Integral Kpr 
-- - 

Now w e  evaluate the exchange integral 

Again we can define a quantity 

involving- integration over the fir st electron. Unfortunately the 
1 Laplace expansion of - will now lead to an  infinite sum because 

5 2  

~ ~ ( 1 )  ~ ~ ( 1 )  is not spherically symmetric. 

Instead we expand - in terms of elliptical coordinates r,, 
using the Neuman expansion, 

Iml where Pk a r e  the associated Legendre functions and 

Iml 
Q a r e  the associated Legendre functions of the second kind. 

Our function xp xr is independent of rp s o  the only nonzero term 

in the m summation is m = 0. 

To simplify the k summation we use the property 

1 

together with the facts that 



P,(q) = constant 
and 

R3 Thus since the volume element for integration is - (2 1 - Il f ) dt ,  d q,, d@,, 
8 

we find that by integration with respect to q , the only nonzero terms 

a r e  for k = 0 and k = 2. 

We will now skip pages of tedious algebra to the result 

(see, for example, J. C. Slater, Quantum Theory of Molecules and 

Solids, Vol. I,  pp 266-273 for the details). 

It is first  convenient to  define 

1 t -t 
C = / I ; dt - 7 dt = 0.57722 (Euler 's Constant) 

0 1 

Ei(-x) = - - e-t dt (integral logarithm) . 
X 

t 

With these definitions the result is 

or for small R 



5 3 
Kmr =$c[T - $ F ~ R ~ +  + 8 fn  4) + (higher order terms). 

Note also for small R that if we include terms through R', 

J,, =zq- 4 - - l c 2 R 2 + . . . )  6 

1 5  I(;, =2c (- - +c2R2  + . . . ) 
4 

* -  Klr < JPr . 



APPENDIX 2-E. DETAILED ANALYSIS O F  THE EXCHANGE TERMS 

In this section we will provide more detailed analysis of the 

classical and exchange te rms  for H: discussed in § 2.2 and § 2.3. 

2-E. 1 The Potential E n e r w  Terms  

Just as with the total energy (see § 2.2.1) the potential 

energy can be partitioned into classical and exchange te rms  a s  

follows 



where 

(pC' is given in 2.3-3) .  Similarly 



where 

First we examine the form of vCPe Substituting (2.1-4) leads to  

The first  term is just the potential energy of an isolated hydrogen atom. 

The second term is the net Coulomb interaction between a proton 

(on the right) and a hydrogen atom (on the left). As shown in App. A 

[esn. (25)l 

and hence 

Consequently in the simple classical description (superposition of atomic 

densities), there is no bonding of %+.  h his classical description is 

equivalent to bringing up a proton to a hydrogen atom without allowing any 

changes in the wavefunction of the hydrogen atom. ] The other terms in the 

potential energy ar ise  from interference effects. That is, they occur 

because we superimpose amplitudes rather than densities. 



The total electron density for the g state is 

which can be partitioned into classical and exchange parts a s  

where pCP is given in (2.3-3) and 

Since 

and 

= 1 

the integral of pX must be zero 

Jd7pX = 0 

That is, pX merely shifts density around with no net contribution to the 

total electron charge. As a result we can determine the sign of 

vX g = J~Tv(:)P;(:) 

from Fig. 2-8. Here we see that pX > 0 near the bond midpoint 
g 



while p X  < 0 near the nuclei; that is ,  pX leads to  a shift of charge from 
g g 

the nuclear region to the bond region. Since v( r ) is much more 
h 

negative near the nuclei than near the bond midpoint, this shift of charge 

into the bond region leads to  a positive value for V (R) as shown in 
g 

Fig. 36. 

EXER CISE : 

(a) Evaluate pX and at the bond midpoint for  R = 2.5 a, . 
g 

x R 0.033 cQ R 0,286 [Answer: p ( ) = - g -2- 9 P = -1 . 
n n 

(b) Evaluate pX and at the left nucleus. 
g 

[Answer: pX (0) = -0.10 0.50 
g 

and pcQ(0) = - ] . 
71 a 



POTENTIAL ENERGY (HARTREE) 



2-E. 2 The Kinetic Energy T e r m s  

The kinetic energy of the  $o s t a t e  can be wri t ten as 
b 

where 

We' will  wri te  

where  



Similarly TU = TCP + where 
U 9  

Since T" is just the atomic value of the kinetic energy (independent of.R), 

the changes in T responsible for bonding must all be contained in ?. 
Thus the plots of T and T, in Fig. 12 a re  actually plots of T~ and T:. 

g g 
The large negative value of T responsible for the bond in H: 

g 
results from the large negative value of rt. We will now examine why 

7t is large and negative. From Appendix 1-A we h o w  that 

and 

Thus 

In order to understand the significance of the terms in (ZO), we will 

consider first the case where T~ is modified by replacing 



"Q vx, in (20) by 1 ~ ~ ~ 1  1 ~ ~ 1 .  This leads to 

an integrand of the- form 

Since xe = e -ra we obtain 

A 

(where er is a unit vector in the r direction) and hence (21) becomes 

X However the term in brackets is just proportional to p.  in (9) and hence 

from (10) the resulting integral is zero. Thus i t  is the difference between 

the dot product term 

in (20) and the absolute value term 

in (2 1) that is responsible for the large negative value of T~ and hence of the 

chemical bond. To emphasize this we define a function called the 

such that 

Large contragradiences lead to a large negative 7t and hence strong bonds. 

As discussed in 8 2.3.3 and illustrated in Fig. 14, the largest values of 

C(r) occur for points in between the nuclei. 



2-E. 3 Specific Results for H,f 

From App. A the explicit form of T~ for HZ is 

Thus a s  expected, 7t - 0 a s  R- 0 and as  R+w. The minimum in 7t occurs 

for R = 2. Thus we would expect the maximum bonding effect to occur 

near R = Za,. Indeed this is the optimum R of the exact wavefunction of 

Q++. Approximating the bond strength a s  

x - ?t 
Tg - -1+S 

we obtain for R = 2 (where S = 0.6) 

In fact the bond energy is only 0. l h  = 2.5 eV, 

and the te rm does dominate the bonding. For 
g 

quantitative considerations we should, of course, use the total E ~ .  

From Appendix A the explicit form of 7v for H: is 

neglecting te rms of order e-2R. Combining with .rt leads to 

(neglecting t e rms  of order eoZR), whereas 



Thus 

and hence 7 = - - 5 .  
R 

Various energies for  H: a r e  tabulated in Table I. 

Table 2-1. Energy auantities for  the LCAO wavefanctions of the g state of H,'. All 
quantities a r e  in atomic units. 

R s t  AV" AVt~tal - TX= *Ttotal hEt~tal  

a ~ h e  values at R = 00 a r e  vCQ=-1 .0 ,  V t o t a l = - l . O ,  T total=O. 5, E = 0.5. 
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The energy E ,  of any approximate wavefunction $, is an upper bound on 

the exact energy of the ground state E,, 

leading to  the variational condition: If an approximate wavefunct ion (and hence 

the energy) is a function of some parameter h , then the optimum wavefunction 

satisfies the (necessary) condition 

Expanding the unknown wavefundion $ in terms of a basis 

P 

and applying the variational condition leads to a set of matrix equations, 

HC. = ESC 
A n  A n  

for obtaining the optimum coefficients (i. e. , wavefunct ion). 

More exact wavefunctions of H: are  considered in § 3.2 ,  but in § 3.3 we 

find that the description of bonding in terms of exchange energies is retained. 

In § 3.5 we present an overview of three u s e N  methods for wavefunctions: 

(a) The Hartree Fock (HF) method is a generalization of the MO wavefunction 

in which the wavefunction (ground state of a two-electron system) is taken a s  



and the orbitals @ optimized by solving the differential equation 

or  the matrix equation 

These equations a r e  nonlinear and must be solved iteratively. 

(b) The generalized valence bond (GVB) method is a generalization of the VB 

method with the wavefundion taken of the form 

and the orbitals @a and @b optimized. This leads to  two matrix equations 

analogous to  the HF equations (3.5-18) and to  two differential equations 

analogous to  (3.5- 20). 

(c) The configuration interadion (CQ method with the wavefunction taken of 

the form 

For the ground state this wavefundion can always be written in terms of 

In 8 3.5.5 we find that the ground state of any two electron system is 



nodeless and symmetric 

In 8 3 .6  and § 3 .7  we find that the HF wavefunction accounts for all  but 

abed 1.1 eV of the energy for He and H, and that a CI wavefunction with five 

NO'S accounts for all but about 0.15 eV. The four correlating NO'S for this 

wavefunction all involve one nodal plane. 

All these methods involve expansions in terms of basis sets. For He  it 

is possible to  obtain highly accurate HF and GVB wavefunctions with only two 

(s-like) basis functions [the double valence (DV) basis] and for H, similar 

quality wavefunctions can be obtained with six basis functions (two s and one p 

on each center), [the DVP or double valence plus polarization basis] . 



C h a p t e r E l e c f o r r o n  Systems 

In Chapter 2 we discussed approximate wavefunctions for H: 

and for H, 

In this chapter we will consider some aspects of more exact wavefunctions 

for these molecules and for the two-electron atom, He. Our emphasis will 

be on qualitative ideas, explicit methods for solving for the wavefunctions 

will not be developed until Chl20c. 

In 83.1 we examine the variational principle and in 8 3.5 we use this 

principle to examine some of the useful methods for calculating wavefunctions: 

Hartree-Fock (HI?), generalized valence bond (GVB) , and configuration 

interaction (CI) . 
Accurate wavefunctions for H:, He, and H, are  discussed in sections 

§ 3.2, § 3.6 and § 3.7, respectively. In § 3.3 we reexamine the nature of the 

bond in H: and in 8 3.7.2 we reexamine the bond in H,. 



9 3 . 1  The Variat ional Principle 

The wavefunction for the ground state of the hydrogen atom has the form 
-r e and the wavefunction for the ground state of the harmonic oscillator is 

However, there a r e  very few interesting systems for which the Schrodinger 

equation can be solved exactly. Even s o  there a r e  general procedures allowing 

one t o  obtain highly accurate (indeed arbitrarily accurate) wavefunctions. 

The powerful tool needed is the u e  which will be discussed 

extensively in Chl20c. Here we will outline some of the key results of this 

principle in order t o  clarify the qualitative discussions of Chl20a. These key 

results are:  

a. Upper bound theorem. 

If IC/, and E, a r e  the exact ground state wavefundion and energy of a 

system 

and if Go is an approximate wavefundion with energy 

then 

That is, the energy evaluated using any appraximate wavefunction is an upper 

bound in the exact energy of the ground state. 



be Variational condition 

Given an approximate wavefunction $ (r) depending upon some 
X 

parameter A ,  

then the optimum value of A for describing the system must satisfy the 

necessary condition 

where 

Equation (4) is referred to  as the variational condition. 

c. Basis set ex~ansions 

Given a set of functions 

the opt imurn wavefunction of the form 

satisfies the condition 

or  in  matrix notation 

H C  = E S C ,  
A n n n  



where 

The set of functions (5) used for  expansion of the unknown function @ is called 

a basis set. The unknowns a re  the coefficients 

which a re  obtained by solving the matrix equations (7). 

§ 3.1.1 Discussion Of Upper Bound Theorem 

The upper bound theorem (3) is easy t o  derive. Consider that the exact 

eigenstates ($1~1 of the HamiEonian were known 

with i = 0 as the ground state. 

Since the set of functions (q.) is complete, we can expand any 
1 

approximate wavefunction $I, a s  

Of course, in a real  problem we will not know the functions ( J /~ ) ,  and hence 

we will not be able to calculate the { ci). However, the analysis in this section 

will serve to establish a relation between the approximate and exact solutions. 
From (10) and (11) 

and the energy of the approximate wavefunction @, is 



Assuming @, is normalized, 

Using (14) in (13) we obtain 

Since Ei 3 E, and / Ci l 2  2 0, the right-hand side of (15) is necessarily 

positive, and hence 

That is, the energy calculated for any wavefunction is never lower than - 
the exact energy for the ground state wavefunction? Thus we say that 

* 
In deriving (1 6) we assumed that @, could be expanded in t e rns  of 

the eigenfunctions of $. This requires that $I, satisfy the boundary 
h 

conditions for X. For example, if the boundary 

conditions for the system described by (10) were such that all wave- 

functions a r e  anti-symmetric, then we could not allow @, to contain a 

symmetric part. 



8 3.1.2 Discussion of the Variational Principle 

Since any approximate wavefunction must yeild an energy above the energy 

of the exact (ground state) wavefunction, we have a useful criterion for improving 

approximate wavefunctions. Namely, i f  you can find some change in the wave- 

function that leads to a lower energy, then do it! And reject any changes that 

increase the energy. Ultimately i f  we consider a l l  possible changes in the 

wavefunction, this procedure must yield the exact wavefunction. Normally we 

lose patience before considering all changes in the wavefunction, and instead we 

consider functions of certain restricted classes. Here our basic criterion for 

approximating the wavefunction will be to select that function of our specific 

restricted class leading to the lowest energy. If h is some variable parameter 

for the restricted set  of functions being considered, then the optimum wave- 

function must satisfy 

9 (17) 

since otherwise a lower energy could be obtained by changing X a bit, a s  

illustrated in Fig. 1. 

Figure 3-1. 



This criterion for optimizing a wavefunction is called the variational 

principle and forms the basis of all methods we will consider for 

determining wavefunctions. It should be noted here that (17) is not 

sufficient to guarantee a minimum with respect to variations in A 

a2 E (this requires --- > 0 )  and even if a minimum is found it need not ax2 
in general be the minimum leading to the lowest energy. Fortunately 

for the types of problems we deal with, .theseG potential difficulties can 

usually be avoided. 



3.1-6 

.§ 3.1.2a Parameter Optimization 

Consider as an approximation to the ground state of the hydrogen 

atom the function 

where o! is a parameter. To determine the value of a minimizing 

the energy, we first calculate the energy a s  a function of a, 

The optimum value of o! is given by 

Substituting this into (19) we obtain 

(recalling that the exact energy is E = -0. 5). Thus, even though (18) is con- 
siderably different from the exact eigenfunction for the ground state of the 
hydrogen atom, by optimizing a, we are able to account for 84.9% of the 
energy. 

Exercise. (a) Derive the energy expression (19). 

(b) Consider 
2 

z emar 
as an approximation to  the 2p orbital of hydrogen atom. 

Find the optimum a. 

(c)  How would you proceed to  obtain a corresponding 

approximation to the 2s orbital of hydrogen atom ? 



§ 3 .I. 3 Basis Set Expansions 

We will now use the variational principle to  determine the best 

representation of an approximate wavefunction a s  an expansion (6) in terms 

of the functions of some finite basis set (5). The energy is 

where 

and H S a re  given in (8). (We do not assume here that the basis functions pv' /yv 

a re  orthonormal; they must of course be linearly independent. ) 

The energy (20) depends on the P parameters (C ) , and thus from the 
I.1 

variational principle we require that 

From (20) this leads to 

and hence 



* Assuming that the basis functions { x ) and coefficients (C ) are  all real, 
P fl 

we obtain' 

and hence 

In matrix notation (7) becomes 

HC = ESC.  
h h  h h  

If the basis functions a r e  orthonormal 

the variational condition (25) becomes 

HC = E C .  
A A A 

Thus the variational principle leads to  a finite matrix equation directly analogous 

to the Schrodinger equation. Indeed if a complete set of basis functions is used, 

the solution of (17) or (27) is the exact solution of the Schriidinger equation! 

Although the wavefunction and basis functions were written as one electron 

functions, this procedure applies identically for many-eledr on wavefunctions . 
* 
The more general case leads to  the same equations. 

' ~ o t e  that if the basis functions a re  real then H = H and S = S . 
Cry VC1 Clv v v  



§ 3.2 Accurate Wavefunctions for HZ 
The LCAO wavefunction of 33: discussed in 8 2 . 2  is an approximate 

wavefunct ion and does not provide a quantitatively accurate description of 
+ H, near Re. In this section we will discuss more accurate wavefunctions of 

HZ. First we consider a useful intermediate level description, the MBS 

wavefunction. 

83.2.1 Scaled LCAO Wavefunctions 

We will describe the wavefunction of HZ in t e rms  of linear combinations 

of two orbitals, x p  and X, , centered on each proton, but rather than atomic 

orbitals we will use scaled at omic-like orbitals 

The scaling parameter 5 is referred to a s  an orbital exponent. Use of < = 1 

leads back to the LCAO description of $2 .2 ,  c> 1 leads to more contracted 

orbitals, while ( < 1 leads to more diffuse orbitals. 

Using the basis set  (1) the wavefunctions of H: have the form 

just a s  in § 2.2. However the energies of these wavefunctions depend upon both 

( and R (see App.3A for the specific dependence of the integrals on L). 

At each R we will now use the < leading to the lowest energy. Since the 

forms of E and EU a r e  different, the optimum < wil l  be different for the 
g 

g and u states, a s  shown in Fig. I. 





As shown in Fig. 2 and Table 1, the improvement in the energy for the g state 

is quite remarkable, leading t o  energies close to  the exact answer. For the 

u state both the LCAO and MBS energies a r e  quite close t o  the exact answer. 

In discussing such wavefunctions we will use the following terminology 

(a) LCAO denotes the use of a linear combination of atomic orbitals using 

the orbital emonents of the atoms. 

(b) MBS (minimal basis set) indicates the smallest set of atomic-like functions 

that would describe the case of R = -. For finite R t h e  orbital exponents will 

generally be optimized. The results of MBS calculations will be discussed 

further after a discussion of the exact wavefunctions of H:. 

Table 3-1 

Optimum Bond Length (Re) and Bond Strength (De) for the g state of H:. 

All quantities in atomic units. 

Non-Relativistic 

Neglect Nuclear Kinetic Energy 

L C A O ~  M B S ~   EXACT^ 

Neglect Include 
Nuclear Nuclear 
Kinetic Kineticd 
Energy Energy 
EXACT+ EXACT* 

a.  Unpublished calculations, Wadt , Olafs on and Goddard. 
b. D. R. Bates, K. Ledsham, and A.  L. Stewart, Phil. Trans. Roy. Soc. 

A246 215 (1953). - 
c. S. K. Luke, G .  Hunter, R. P. McFachran, and M .  Cohen, JCP  50 - 

1644 (1969). 
d. G. Hunter and H. 0. Pritchard, JCP  46 2153 (1967). 

/C/*. 



_I-- L C A O  (c=l.O) 
----------- MBS (COPT)  

E X A C T  

INTERNUCLEAR DISTANCE (BOHR) 

Figure 3-2 The LCAO (1: = 1. O), MBS (optimum c), and exact energies for 

the g and u states of HZ. Note that Fig. @) does contain three 

different lines. The vertical scale of @) is twice that of (a). 



$3-2.2 TheExact Wavefunction for H? 

Previously we considered approximate solutions 

of the Schr6dinger equation 

where the Hamiltonian is 

(see Fig. 2-1 for the coordinate system). Exact solutions t o  (3) have also 

been obtained a s  will now be described. 

From § 3.1 we can obtain arbitrarily accurate wavefunctions for H: 

by expanding the orbital in te rms  of a sufficiently general basis 

where the expansion coefficients a re  obtained by solving the P by P 

matrix equation 

with 

(assuming the basis to  be orthonormall. A s  the basis set is made more 

complete (P -- m) the wavefunction approaches the e x a d  wavefunction. 

Although the above procedure is practical, i t  is possible for H: to 

solve directly for the exact solutions. The procedure is examined in 

Appendix D. 



§ 3.2.3 Comparison of Wavefunct ions and Energies 

The various wavefunctions of the g and u states a r e  compared in 

Fig. 3 for R = 2a, . For the g state we see that the shape of the LCAO 

wavefunction in the bond region is in good agreement with the exact wave- 

function; however, the magnitude of the density in the bond region is - 25 t o  

3w0 low. The MPS description leads t o  reasonably good densities near the  

nuclei but too low a density in the bond region. Thus with MBS the shape 

of the wavefunction is not well described. 

In the u state the LCAO wavefunction is in much better agreement with 

the exact wavefunction than is the MBS wavefunction. I do not understand the 

reason for this. In addition, I do not understand why the energies of these 

wavefunctions a r e  so  similar (see Fig. 2b) despite the large differences in 

the wavefunct ions. 

In Fig. 4 we compare the LCAO and MBS wavefunctions a s  a function 

of R, finding that the LCAO description does reasonably well for R > 4a, . 
Note the large difference in the behavior of the g and u states for small  R. 

These differences were also manifest in the optimum exponents of Fig. 1. 



-6.0 -4.0 - 2.0 0 2.0 4.0 
z COORDINATE (BOHR)  

Figure 3-3 The wavefunctions of H: at R = 2.0 a,. 



g STATE H; u STATE H$ 
0.6 1.2 

0 

0 -1.2 
0.6 1.2 

0 

-- 0 -1.2 
3 0.6 
a 
w 

z COORDINATE (BOHR) z COORDINATE (BOHR) 

Figure 3-4 The amplitudes of the LCAO (dashed) and MBS (solid) wave- 

functions for (a) the g state and @) the u state of HZ. 



$3.3 More on the Chemical Bond 

In § 2.2 and 2.3 we analyzed the bond of H: in te rms  of the LCAO 

description. Now we will reexamine the bond using more accurate wavefunctions. 

With more accurate wavefunctions we still find (§ 3.3.1) that the exchange 

energy E ~ ,  (more specifically the exchange kinetic energy T~ part of E ~ )  is 

responsible for the bonding o r  antibonding of the g and u states of HZ. 
On the other hand, partitioning the energy into the total potential 

energy (V) and the total kinetic energy (T), we find (5 3.3.2) that neither can 

be solely responsible for bonding. 

§ 3 . 3 . 1  The Classical and Exchange Energies 

Defining classical and exchange te rms just as in § 2.2, 

E = E ~ ~ +  E~ (1) 

E"= ( xe I" lxr) (2) 

but using the MBS wavefunctions, we obtain the results of Fig. 5. Thus the 

exchange eaqrgy dominates the bonding just as for t h e  LCAO wavefunction. 

Partitioning the E~ into potential and kinetic parts, vX and 9, 
EX = vX + TX (3) 

as in Fig. 5, we see that favors bond formation while 9 opposes i t ,  

just as for the LCAO wavefunction. 

Thus in terms of the classical and exchange quantities the LCAO and 

MBS descriptions a r e  quite similar. In both cases it  is the large decrease in T" 

tha t% responsible forbondformation. Jus t a sd i scussed inP2 .3 ,  ?X 
is large and negative because the atomic orbitals a r e  contragradient in the 

region between the nuclei. In particular the 9 is similar in character for 

the LCAO and MBS descriptions. With 5>1 the gradients get larger  and 

favor a smaller R s o  that the differences in ? for the LCAO and MBS 

descriptions a r e  easily understood. 



INTERNUCLEAR DISTANCE (BOHR) 

Figure 3-5. (a) The total energy (E) and the components E~' and E~ for the MBS 

wavefunction of the g state of H:. (b) The T~ and vX components of E ~ .  

A l l  quantities a r e  relative t o  R = a,. 



3. 3. l a  An Ambiguity 3,303  

There is a flaw with this procedure of decomposing the 

energy into classical and exchange parts. Adding a second basis function 

on each center, say 
X 2 ~  

and X,,, and optimizing the coefficients ( 9  3. 1) 

leads to 

and adding additional functions we ultimately obtain the exact wavefunction 

in the form 

Thus we can define optimum left and right orbitals as 

and obtain an exchange energy for the exact wavefunction. The problem is 

that for the - exact wavefunction there is not a unique choice for the left 

and right functions X and Xr . As a result, there is some ambiguity in 

the exchange energy for the exact wavefunction. On the other hand, with 

optimized basis functions only a few functions (say, two s and one pZ on each 

center) lead to quite accurate descriptions but with no ambiguity in the 

decomposition (5). 

9 3 . 3 . 2  Potential and Kinetic Energies 

 ath her than the partition (1) of the energy into classical and exchange 

terms, it has been much more common to partition the energy into total 

potential energy, V, and total kinetic energy, T, 

I believe that this partition mixes up the things characteristic of bonding with 

other quantities that are nearly independent of bonding with the result that neither 



(T or V) consistently contains the bonding stuff. A good illustration 

of this is to compare the quantities for the LCAO and MBS wavefunctions 

of H: . As shown in § 3.3.1 the classical and exchange energies behave 

very similarly for these two cases. However as shown in Fig. 6 the 

behavior of T and V for the MBS and LCAO wavefunctions is markedly 

different. Thus for LCAO the T(R) is always lower than T(m) while 

V(R) is always higher than V(w) . This might suggest that it is kinetic 

energy that is responsible for the bond. However for the MBS wavefunction 

T(R) is below T(w) only for R >2.7a0. Thus a t  Re = Za,, T(R) >T(.o) and it 
total 

would be ludicrous to assert  that thebnetic  energy is the quantity dominating 

bonding! On the other hand, in  the MBS wavefunction,V(R) > V(-) for 

R = 3.5 a,. Thus although V(R) dominates the bond at Re, it opposes bond 

formation for R a 3.5 a,. Furthermore, for LCAO, V(R) opposes bonding 

for all R. 

Such difficulties have convinced me that (6) is not a useful partition of 

the energy. The key indication of this is that although the total energy changes 

monotonically from R = - to  Re , the V and T for the MBS and exact wave- 

functions a r e  nat monotonic, each dominating the energy over different regions. 

Hence neither can be uniquely responsible for bonding. 
* 

Occasionally, energy curves a r e  analyzed by partitioning the V into 

various parts 

V = ven + vnn + vee 

where ee, en, and nn denote electron-electron repulsion, electron-nuclear 

attraction, and nuclear-nuclear repulsion terms (ee is not present for &+). 

A s  shown in Fig. 7a, each term is monotonic, with Ven 

decreasing with R. One might conclude from this that it is Ven that is 

responsible for bond formation. However as seen from Fig. 7b the 

* Usually in the analysis of rotational and conformat ional barriers in 

polyat omic molecules. 
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g state and (c, d) the u state of H:. All quantities 
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Figure 3- 7. The total potential energy (V) and the partition into V" 
(nuclear-nuclear energy) and ven (electron-nuclear energy) 
for (a) the g state and (b) the u state of HZ (exact wavefunctions). 
All quantities are relative to the value for R = - . 



ven and vnn a r e  also monotonic for the u state and again ven decreases 

with R, but this state is repulsive! Thus despite similar ven and vn" 
for g and u, we obtain radically different potential curves. My conclusion 

is that ven is dominated by quantities other than those responsible for 

bond formation. 



8 3.5 Overview of Theoretical Methods 

In this course the plan is to cover the important qualitative ideas in 

Chl20a and to  examine the theoretical methods in detail in Chl20c. However, 

familiarity with the theoretical methods is important for discussing 

qualitative ideas and hence we will outline these methods. 

53.5.1 Basis Sets 

Several methods involve solving for the opt irnum shape of one-electron 

orbitals @i(r). The general procedure for carrying out such calculations 

involves selection of a basis set 

suitable for describing the optimum orbitals 

Here the basis functions are  fixed and hence selection of the optimum 

coefficients 

serves to determine the orbital (Pi(r). This procedure is analogous to a 

Fourier expansion where harmonic functions (sines and cosines) are used 

a s  basis functions in (1). 

For an exact description of the optimum orbital it is generally 

necessary to use an infinite number (a complete set) of basis functions, 

however for practical reasons we must use a finite set. Indeed from 

numerous studies of molecular wavefundions there are  principles that can 



be used to select rather small  basis sets that yield quite accurate wave- 

functions. 

~n evaluating the wavefunctions and energies using a basis set a s  in 

(I) ,  we must evaluate integrals of the form 

where the functions may be centered at various regions of space. Thus 

an  important criterion in selecting the basis is that the molecular 

integrals be practicable to  evaluate. In order to obtain the best wave- 

functions with the fewest basis functions, we want to choose the basis 

functions to have shapes characteristic of the  eigenstates of the 

molecular systems. 

For a Coulomb potential (i. e .  the hydrogen atom), the eigenstates 

have the  form 

0 %  %r 2pZ: r cos 6e 

2px: r sin C c o s  cp e -$zr 
' Z r  2p : r sin sin q eWz 

Y 
2 Z r  

3s:  (r - pr + cr)e-" 

etc. 



(where normalization is ignored and the constants a and a re  unimportant 

to our considerations here). In order to describe with a finite number of 

basis functions s ingular characteristics such a s  the cusps occurring near 

the various nuclei, we should include in our basis set  functions having 

similar singular characteristics. Thus for a molecular system we should 

use atomic functions like (5) centered upon the various nuclei of the molecule. 

The radial parts of the functions in (5) all can be built from functions 

of the form 

r"e-Cr 

where various values of n and of the orbital exponent, 5 ,  must be allowed. 

Functions of the form (6) a r e  preferable to the hydrogen atom orbitals (5) 

since (6) is more convenient for evaluating the molecular integrals. 

Combining functions of the form (6) with appropriate angular functions 

(2 p,, the real  spherical Harmonics) leads to a convenient se t  of one- 

particle orbitals 

for use in atomic and molecular wavefunctions. These functions (7) 

a r e  referred to as -# (or Slater-type orbitals, STO) 

in honor of an early exponent* of such functions. They a r e  denoted 

a s  is, 2s, 2p, etc. just as for hydrogen atom orbitals. The - orbital 

w, 5 ,  in (6) is considered a s  an adjustable parameter and is 

generally tho-sen as the optimum value for the particular molecule and 

basis set  of interest [rather than taken as ( = ~ / n  as suggested by (5a)I. 

me wilt use the term function when referring to an arbitrary function 
as in a basis function and the term orbital when referring to  a specific 
optimized orbital as in a H F  or  GVB orbital. * J. C. Slater, Phys. Rev., - 36, 57 (1930). 



For  example, a good basis  for describing the wavefunction 

for H, is to  use two is Slater functions (denoted as 1s and is'), a 2s 

Slater function, and a set  of the 2p Slater functions (2pZ, 2px, and 2p ) 
Y 

on each center. The optimum exponents at R = 1.4 a, a r e  I. 

(where the molecular axis is along 2). 

With this  basis the CI wavefunct ion leads t o  an energy of - 1.1 6696 h 

(at R = 1.4 a,), 99.4% of the exact answer* -1.17447 h. Note that the 

optimum orbital exponents a r e  significantly different from the values 

for the free atom 

'A. D. McL.ean, A .  Weiss, and M. Yoshimine, Rev. Mod. Phys., 

* W. Kolos and L. Wolniewicz, JCP - 41, 3663 (1964). 



The second type of basis functions commonly used in molecular 

calculations are  1 where the egCr of (7) is replaced 

by e-ar2 and n is taken a s  1, 

Although Gaussian functions have the wrong behavior as r - 0 and a s  

r - a,, they serve just as well a s  Slater functions in describing the 

valence orbitals and the bonds of molecules. The major advantage of 

Gaussian functions is that the molecular integrals (4) required for large 

molecules are much simpler (and less time consuming) than for Slater 

functions. 

Generally the basis sets a r e  optimized for the atoms. If properly 

carried out, the atomic basis sets supplemented by a few additional 

functions (polarization functions) serve to provide very accurate 

descriptions of the molecular wavefunct ions. 

S3.5.2 The Hartree-Fock Method 

53.5.2a The Basic Equations 

In § 2.2 we described the simple MO wavefundion of H, in which 

the two-electron wavefunction is expressed as 

where cp is the MU 

and xt and xr are  hydrogen orbitals centered on the two nuclei. Now 

we will consider the case where @ is allowed to  be completely general. 



Thus if ( X  } is some basis set, we write 
P 

with the coefficients (C ) chosen so that i& in (10) leads to the lowest 
P 

possible energy. 

The energy of (1 0) is 

where 

and 

Applying the variational principle to (1 2) 

with the constraint (14), leads t o  



where E is referred t o  as the orbital energy, 

E = (0) + Jog), 

and 

is the electrostatic potential a t  point r, due to the charge density 
I + (r,) 1 integrated over all  r,. 

Substituting (11) into (15) leads to  

where 

In matrix notation (18a) is written 

Since 

H is a function of the unknowns { C ) and (18) is nonlinear. Since the 
EI.Y P 

basis functions { x } a r e  known, all integrals in (19) can be evaluated 
F1 

just once so  that (18) becomes a (nonlinear) algebraic equation. 

In order for the variational condition (15) t o  be satisfied for - all 

x of a complete set, the function 
P 



must be zero. That is, the  differential equation 

or  (for H,) 

must be satisfied in order that Q, be a completely optimum function. 

The resulting optimum wavefunction (10) is called the 

the optimum orbital of (20) is called the Hartree-Fock 

orbital, and this whole approach is called the - 
in honor of the Englishman D. R. Hartree and the Russian V. Fock 

(sometimes Fok) who first developed it. 

§ 3.5.2b Solution of the Hartree-Fock Equations 

The differential equation (20) is not linear in @ since J depends 4' 
upon +. The usual approach to solving (20) is the iterative method in which 

we guess the orbital, @, , evaluate J and solve the linear equation 
@ o  

(h + J@o) $1 = E $1 

for a new orbital @,. Then ;PI is used to evaluate a new J and 
$1 

(h + J+,) $2 = E $2 

is solved for a new orbital @,. This process is continued until it converges, 

that is, until +I+l = @I . 



For atoms the HF equations (20) can be reduced to one-dimension 

and solved numerically. However, for molecules the only practical 

procedure is to use a finite basis set and to solve the resulting matrix 

equations (18). These are  also solved iteratively. One guesses the 

coefficients {C0 ) and evaluates the H of (19). With H fixed, the 
C1 Crv P V  

matrix equations (18) are  linear and easy to solve for a new set of 

coefficients {c' ) . This process is continued until it converges. 
I-L 

By solving the matrix HF equation (18) for larger and larger basis 

sets one can in the limit approach the results of solving the numerical 

equations (20). Indeed by proper choice of the basis functions it is 

possible t o  obtain very accurate solutions for very small P, e. g., P = 2 

for He and P = 6 for H,. 

$3.5.2~ Historical Note 

Before real quantum mechanics (i. e. , the work of Schrodinger , 

Heisenberg, and their contemporaries in 1925, 1926), physicists (and 

chemists) were attempting to understand the structure of atoms (and 

molecules) on the basis of a many-electron Bohr atom. The idea was 

that each electron moved along a different Bohr orbit, experiencing 

electrostatic interactions due to all the other electrons but satisfying 

various (postulated) rules in order to obtain agreement with the periodic 

properties of the elements. 



Hartree in 1923 suggested* approximating this problem by assuming 

that the average interaction with the other electrons leads to a net potential 

that is a function only of the distance from the nucleus. He then tried to 

determine the form of V(r) [same V(r) for all orbitals] by fitting to  the 

experimental energies of the orbits of various electrons (e. g. , from 

X-ray data). 

After quantum mechanics Hartree realized that he could convert 

this idea into quantum mechanics and actually solve for the potential and 

orbital. He thus started directly with (20) (and its generalization for more 

electrons) and began solving for atomic wavefunctions. These equations 

a re  called t h e s  [Hartree, a properly modest English 

gentleman, continued to call them the Self-consistent Field (SCF) equations]. 
# Slater in 1930 pointed out that Hartreels equations could be derived 

using the variational principle; thus putting HartreeTs ad hoc approach 

on a more fundamental basis. Slater also pointed out that for 

many-electron atoms there a r e  additional terms (we call them exchange 

terms) that should be in the wavefunction (from the Pauli principle, see 

Chapter 4), but Slater showed that these t e rms  were of the same size as 

the intrinsic (correlation) e r r o r s  in the Hartree approach and did not 

pursue them further. 

* Proc. Camb. Phil. Soc. - 21, 625 (1923). 
t ~ r o c .  Camb. Phil. Soc. - 24, 89 (1 927), outlined the mathematical techniques 

5 and - ibid. , p. 111, reported Hartree wavefunctions for He (els = 0.917- h) 
and approximate calculations for Rb. 
#phys. Rev. - 35, 210 (1930). 



V. ~ o c k *  in 1930 included the Pauli principle and derived the 

corresponding variational equations obtaining Hartreefs equations but with 

additional exchange terms. These equations a r e  now known as the 

Hartree-Fock equations. (Hartree referred t o  them as SCF with exchange.) 

The approach of using a finite basis set for obtaining HF wave- 

functions (rather than solving numerically, & la Hartree) is sometimes 

called HF Roothaan in honor of the early leader in the development and 

application of this procedure. ' We will make no such distinctions, although 

Roothaan's paper is amazingly complete and Roothaan is rightfully 

credited with the development of the basis set expansion (BSE) approach. 

An early application of BSE was by C. A. Coulson   roc. Camb. Phil. 

Soc. - 34, 204 (19 38)] who concluded that BSE was not practical and that 

SCF orbitals would not prove t o  be very useful for molecular structures. 

Basically Coulson showed that the same effort required t o  obtain an 

accurate HF wavefunction would, if  applied t o  other forms of the wave- 

fund ion (with eledrpn correlation), yield far better energies. The point 

missed by Coulson is that for  larger systems these other methods quickly 

become much more cumbersome and expensive than HF. Roothaan's work 

came at just the right time. Application of the BSE approach for larger 

molecules depends upon electronic computers, the development of which 

was just starting in 1951. 

* Z. Physik - 61, 126 (1930). 

'c. C. J. Roothaan, Rev. Mod. Phys. - 23, 69 (1951); G. C. Hall, 
Proc. Roy, Soc. 541 (1951). 



53.5.2d Interpretation, Correlatioqand the ~ o o p m a n d  Theorem 

The variational condition (20) has the form of a Schrodinger 

equation for a particle moving in the potential 

(assuming for  the moment, Hz). 

This is just the classical potential that would be obtained if the second 

electron were replaced by its classical potential, J Thus the Hartree- (Pa 
Fock orbital is the eigenstate of the motion of an electron in the 

average potential due to the other electron. Indeed Hartree originally 

derived his equations from just such classical considerations. In the 

above derivation however, we applied the variational principle and 

found that the best possible orbital satisfies such an equation. 

Of course, in the r ea l  molecule the electron motions will be 
1 1 1 such as to keep - as small as possible and - and - as big a s  

r 1 2  'a rb 
possible, while also minimizing the kinetic energy. Thus a t  instants for  

which one of the electrons happens to be close. to the left nucleus, we expect 

that the other electron will tend tobe near the right nucleus. Such instantaneous 

correlations in the motion of the electrons a r e  ignored in the Hartree- 

Fock wavefunc tion. Both electrons move in the same orbital independently 

of the instantaneous position of the other electron. Hence the e r r o r  in 

the Hartree-Fock wavefunction is called the correlation e r ro r .  

The energy E in (20) is called the From (16) 

i t  has  the value 



where 

is the energy of the two electron system with both electrons in  q5 while 

is the energy with only one electron in @. 

Thus E is just the negative of the ionization potential. There a re  two 

approximations here. One is using the Hartree-Fock energy for the 

two-electron molecule, leading to too high an energy for the two-electron 

system. The other e r ro r  is in describing the ion with the optimum orbital 

q5 found for the two-electron molecule, leading to too large an  energy for 

the ion. These e r r o r s  often tend to cancel yielding ionization potentials 

within - 10% of the exact value. This approximationS' of using the orbital 

energy to  approximate the ionization potential is often called the 
* theorem. Although not strictly the theorem that Koopmans proved 

[T. Koopmans, Physica, n 1, 104 (1933)] ;' we will also refer to  this 

approximation as d. % 

* Note that there is an s at the end of this name and that the Dutch oo 

sounds about like our long o. 

'shortly after this work Koopmans switched to economics. He is on the 

Economics faculty a t  Yale and in 1975 won a Nobel prize for his work in 

optimization theory in economics. 

%'he first application of this approximation was by D. R. Hartree, 

Proc. Camb. Phil. Soc. - 24, 111 (1927). 



53.5.3 The Generalized Valence Bond Method 

In S 2.3 we described the simple VB wavefunction of H, in which 

the two-electron wavefunction is expressed as :  

where xe and xr a r e  atomic orbitals. 

We will now consider wavefunctions of the VB form (21) 

but where the orbitals +a and qb a re  allowed to be completely general. 

To obtain the best such orbitals we will apply the variational principle, 

requiring the orbitals to lead to the lowest possible energy. The optimum 

orbitals a re  called the generalized valence bond orbitals and the resulting 

wavefunction is called the y d  (GVB) wavefunction. 

5 3.5.3~1 The Basic Equations 

The energy of the GVB wavefunction (22) is 

where 

Here and in most of the following we will use orbital subscripts (e. g. , 

a and b) t o  denote orbitals (e . g. , 9, and (6b, respectively). Just as in 

$3.5.2 we will consider that and +b a re  expanded in a basis { x { 
E-l 



and require that 

condition (27a)  leads t o  

where 

* 
and EIa is an operator taking care of all &her terms. To solve (28 )  we 

expand @a with (26)  leading t o  

* The form of H~ is 

where Pb E / b) (b 1 is a projection operator. However, the explicit form 

is of no importance here. 



which in matrix notation is 

where the elements of the H~ and S matrices a re  - - 

and 

For the H F  wavefunction the corresponding matrix is 

The presence of the second (exchange) te rm in the wavefunction (22) 

leads to  the other t e rms  in (32). Of these additional t e rms  only the Kb 

t e rm would be present if the orbitals @a and $b were orthogonal. 

Equation (31a) is the condition for orbital @a t o  be optimum, 

there is a similar equation 

to solve for the optimum orbital%. Thus in the GVB method we must 

solve self- consistently for - two orbitals whereas in the HF method we 

have just one - orbital and hence one equation to solve. Otherwise both 

involve similar computational procedures. 

As shown in Fig. 8, the GVB orbital of H, corresponds closely t o  the 

VE3 orbital. 





3.5-18 

83.5.3b Interpretation 

If (28) is satisfied for all  basis functions x of a complete 
P 

set ,  then % satisfies the differential equation, 

The H~ in (34) can be written a s  

where Vb contains all the te rms depending upon orbital $. We can con- 

sider Vb as the average potential* seen by the electron in @a due to the 

electron in $. The average potential is not just the Coulomb potential Jb 

due to the electron on qb (as  would be expected classically), but also con- 

tains other te rms  arising from the quantum mechanical form of the wave- 

function. However, these additional te rms  are not chosen arbitrarily and 

indeed were determined through the variational principle as the t e rms  

required in order that be the optimum orbital to place in the two-electron 

wavefunction. Thus we can consider the potential Vb as the quantum 

mechanical generalization of the classical Coulomb term for the 

interaction between electrons in overlapping orbitals and $I b' 
The operator, Eia9 in (35) is equivalent to the Hamiltonian 

for an electron moving in the potential due to the nuclei (contained in h) 

plus a potential Vb due to the electron in orbital $. Since orbital 

@a 
is an eigenfunction of H ~ ,  we can interpret @a a s  the eigenstate of 

an electron moving in the average potential (Vb) due to the other electron 

of the system. Similarly, of course, we can interpret (43 as the eigen- 

state of an electron moving in the average potential (Va) due to the other 

electron. Thus with this interpretation we can describe the two-electron 
* Note well that J& is not a local potential (that i s ,  a function of g) :). Rather Vb - 
contains integral operators and upon operating on ea, puts inside an  integral. 
Evensowe canconsider Vb as the effective potentialdue to  @b a s  seenby @a. 



system in terms of two one-electron systems each of which contains 

the average potential due to the other electron. Such a description 

of a multi-elec tron system in terms of electrons moving independently 

of each other will be termed an independent particle interpretation (IPI). 

We will find, especially for larger molecules, that such IPITs will be 

very useful in understanding the wavefunctions. 

It is important to note here that the IPI comes about from the 

one-particle Schroedinger equation, such a s  (34), arising from applica- 

tion of the variational principle to a special type of wavefunction (22). The real  

electrons of a molecule a r e  quite indistinguishable, and we do - not imply that one 

of the electrons moves in one orbital (say $a) while the other electron 

moves in the other orbital (qb). What we say is that the orbitals satisfy 

a one-electron Schroedinger equation for which the field term is the 

average potential of an electron in the other orbital. This is not - the 

equation describing the motion of one of the real  electrons. However, 

considering the eigenstates of two fictitious, distinguishable electrons, 

we do obtain the optimum orbitals for the many-electron wavefunction (22). 

It is really the orbitals which a r e  distinguishable here, not the electrons. 

53.5.3~ GVB Natural Orbitals 
- - 

In order to  obtain another view of the GVB wavefundion we will define 

the GVB natural orbitals* @ and qU as the sum and difference of the GVB 
g 

orbitals Gt and $, 

where 



and S is the overlap of the GVB orbitals 

Rearranging (36) leads t o  

and hence the total wavefunction becomes 

Thus we may view the GVBwavefunction in terms of $l and qr where there 

is always one electron in (Pt and one in qr - or  one may view this wavefunction 

in terms of GVB natural orbitals Q, and $u where part of the time both 
g 

electrons a re  in $ and part of the time both a r e  in qua Here $ resembles 
g g 

the bonding orbital and qU the antibonding orbital. The equivalence of these 

two descriptions may be clear in Figure 9, where Figure 9d and Figure 9g 

a re  equivalent. The f i rs t  natural orbital + has a good kinetic energy but a 
g 

bad two-electron energy. Mixing in a small amount of +u causes an increase 

in the kinetic energy, but this is more than compensated by the decrease in 

the electron- repulsion energy, leading to the optimum w avefunction Fig. 9d 



figure 3-9. 



Requiring that the total wavefunction be normalized leads to 

where from (37), 

That is, if the overlap between the two orbitals is nearly zero (H, for 

R - .o ), then the two configurations come in with nearly equal coefficients. 

On the other hand, for H, at R = 1.4 a, S = 0.8 and hence 

-- * In this section we use g and u for the orbitals as appropriate for I&. However, 
the discussion does - not depend upon inversion symmetry and all results apply 
a1s.o to a GVB pair for an unsymmetric system. 



83.5.4 Electron Correlation 

In a rea l  atom the electrons a r e  expected to  move somewhat in concert 

so that they avoid getting too close to each other while remaining close t o  the 

nucleus. That is, their motions a r e  somewhat correlated. On the other 

hand, in the HF  wavofunctien, @(I) @(2), each electron is placed in the same 

orbital and hence the probability of either electron being at a particular 

position is independent of where the other electron is. That is, the electrons 

in the HF orbital a r e  uncorrelated in their motions. For this reason the 

difference between the H F  energy and the exact energy is called the 

correlation er ror .  For the ground states of two-electron atoms (H-, He, 

~i ' ,  etc.) the correlation e r ro r  is about 1.1 eV. In addition, for H, (at Re) 

the correlation e r r o r  is 1.1 eV. Although this correlation energy is small  

compared to  the total energy of these systems (e.g., 1.5% for He), it is 

comparable t o  many quantites of interest. 

In the GVB wavefunction for H, 

one electron is in while the other electron is in Qr regardless of which 

electron is in which. Hence, there is static correlation in the sense that 

the orbitals for each electron a r e  in a slightly different region of space, 

and hence on the average the electrons stay farther apart. However, the 

presence of electron 1 at a particular location of the orbital does not 

affect the probability of electron 2 being at any particular position in orbital 

, and hence we may consider that the GVB wavefunction does not provide 

for instantaneous correlations among the motions of the electrons. Since the 



GVB wavefunction is the most general wavefunction involving just two spatial 

orbitals, we may consider that all correlation er ror  beyond GVB involves 

instantaneous correlation of the electrons. When important to  distinguish 

these effects we will refer to  the latter a s  dynamic electron correlations and 

the difference between HF and GVB a s  static electron correlation. 

Now consider the description of correlation in the natural orbital (NO) 

representation of the GVB wavefunct ion 

Assume that electron 1 is at some position R on the right side of the molecule 

and consider the likelihood of electron 2 being at equivalent positions R o r  L 

on the right and left sides of the molecule. In the HF wavefunction 

Q ~ ~ ( R , R )  = @(R) @(R) 

and since 

@(R) = $03, 

we have equal probabilities 

of the electrons being on the same or opposite sides. 

In the GVB wavefunction (40) we find 



and hence 

aGVB (R, R) < @ GVB(R,L) , (4 3) 

that is, we obtain the static correlation referred to  above. Using the NO 

form of the wavefunction we obtain 

(using the symmetries of @ and QU) and hence 
g 

Just a s  in (43). Comparing (41) with the H F  wavefunction 

mHF (I, 2) = $g(l) ag(2) 

we see that in order to  obtain effective electron correlation, the second NO 

must have a shape similar t o  that of the first (dominant) NO but with an extra 

nodal plane bisecting the first NO. This allows maximal difference between 

ajNo(R,R) and bJNO(R,L) and hence maximal electron correlation. 

We will later find such arguments in te rms  of nodal planes to  be useful in 

describing other electron correlation effects. 

The above discussion should be made clear in Fig. 9. 



§ 3.5.4a ~onizat ion Potentials 

In general we expect the correlation e r ro r  to  increase with the number 

of electrons (since there a re  more and more complicated interrelationships 

ignored). Thus the ionization potentials calculated from HF and GVB should 

be too small. On the other hand we can get an approximate IP from 

Koopmans' theorem. The Koopmans IP is the energy difference between 

the self-consistent energy of the N-electron system, EN, and an energy of 

the N-1 electron system, EN-1, obtained using orbitals from the N-electron 

wavefunction. Thus the description of the ionic (N-1 electron) state is non- 

optimum leading t o  too high a value for EN - and hence too large a prediction 

of IP. However, the IP calculated using selfconsistent wavefunctions of the 

N and N-1 electron systems should be too small. Hence there is a cancelling 

of e r ro r s  such that the Koopmans theorem value of IP is usually rather good 

(within - 1 Wo). These effects a re  indicated in Fig. 10. 

Exact H F  Koopmans 
Theorem 

N- 1 electrons 

I* exact 

N electrons 

Figure 3-10. 



§ 3.5.5 Configuration Interact ion Wavefunct ions 

Starting with a one-electron basis 

we can construct a two-electron basis 

by combining all products of one-electron functions. In te rms of this basis 

the most general wavefunction is 

The terms in (46) a re  called and the resulting wavefunction is 

called an (CI) wavefunct ion. 

Applying the variational principle § 3.1, the optimum coefficients for 

(46) a re  solutions of equations 

analogous to  (3.1-7) except that each simple index IJ. or v is replaced by a 

combined index 0 77 or pv. For a complete basis (P  = a) the resulting CI 

wavefunction is the exact wavefunction of the system. 



83.5.5a Permutational Symmetry 

Because the electrons are  identical the Hamiltonian must be 

invariant (unchanged) upon per mutation (interchange) of the electrons 

[ ~ e c a l l  that X ( 1 , Z )  = h(1) + h(2) + 1. ] 
r12 

A s  a result of this permutational symmetry the exadeigenstates of K can 

always be taken a s  either symmetric 

or  antisymmetric 

under permutation. 

The proof (see App. A) is quite analogous to  that in 52.1 where we found that 

for a system with inversion symmetry, all eigenfunctions a re  either g or  u. 

Later when we discuss the Pauli principle and spin we will find that 

symmetric spatial wavefunctions @S are  allowed only for singlet (S = 0) 

spin states and antisymmetric spatial wavefunctions \ka a r e  allowed only 

for triplet (S = 1) spin states. 

83.5.5b The Nodal Theorem 

Next we will show that the lowest state of ~ ( 1 , 2 )  [assuming K is 

symmetric (48)] is always a symmetric wavefunction, qS(l, 2), (49). 

A s  shown in 61.2 the ground state of a system is nodeless, that is, 

the wavefunction of the ground state has the same sign everywhere. For 

a one-electron system this means that 



cannot be the ground state* whereas 

can. 

The nodal theorem applies also for many electron systems, such as  

(the proof is exactly as in § 1.2) .  We will now use the nodal theorem t o  show 

that the ground state of any two-electron system must be a symmetric wave- 

function. 

Letting 5 = 5 in an antisymmetric wavefunction 

leads t o  

and hence 

* except for R = a, where this state is degenerate with the nodeless state. 



[For example, typical one-dimensional cases are  illustrated in Fig. 11. ] 

Thus every ant isymmet r ic  fund ion has a nodal plane whereas symmetric 

functions need not have nodal planes. Since the nodal theorem implies that 

the ground state is nodeless, then the ground state must be permutationably 

symmetric, (49). Later we will find that a symmetric spatial wavefunction 

must correspond to a singlet spin state and hence the ground state of a two- 

electron system must be a singlet state. 

In the case of a sufficiently singular potential it is possible for the 

lowest wavefunction having a node to  be as low a s  the lowest nodeless wave- 

function. However, in three dimensions our Hamiltonian (51) is not this 

singular and hence the inequalities apply. 

0 0 
0 Za a 0 552 a 

a) Antisymmetric Wavefunc tion b) Symmetric Wavefunc tion 

(triplet state) (singlet state) 

Figure 3- 11. Illustration of nodal patterns of two-electron systems 
(in one dimension). 



8 3.5.5~ Natural Orbitals 

In App. B we show that the CI wavefunction (46) for the ground state 

of any two-electron system can be written as 

(that is, double occupied orbitals only) where the orbitals { X  } called 
E-t 

natural orbitals, a r e  orthonormal 

Since (53) has only P terms rather than p2 as in (46), it is obviously easier 

to  interpret. 

The density of electrons in a two-electron system is defined as 

Thus using (53) leads t o  

where p. = IC 1 2 .  
P P 

Since there is a total of two electrons in the system 

J d3r, ~ ( 1 )  = 2, 

the coefficients must sum to two, 

Consequently, in t e rms  of natural orbitals, the total density of the CI wave- 

function is just the sum of the densities of the natural orbitals weighted by a 

population p that sums t o  two. 
P 



63-6  Wavefunctions for He 

In this section we will illustrate the HF, GVB and CI methods by 

describing the wavefunct ions for He atom. 

83.6.1 HF Wavefunctions for He Atom 

First  we consider various approximations to  the H F wavefunct ion 

where the HF orbital @ is expanded in a basis set. 

93.6.1a MBS 

The simplest description of He atom is to  place two electrons in the 

1s orbital of He+ 

~ = e  - Cr 

where = 2.0. The total energy in hartrees is just 

where 

is the energy of He' and 

is the Coulomb interaction of the two electrons (see App. C) . 
This description can be improved by optimizing t: (leading to  the 

MBS description). As shown in App. C the energy has the form 



where 

(i. e . ,  T, and V, a r e  the kinetic and potential energies for the case of 

= 1). Requiring that aE/a < = 0, t o  obtain the optimum c, leads to  

= 1.6875 

for  He. Since the optimum for the one-electron atom is 

we can interpret the corn as an effective charge that h a s  decreased from Z 

due to the presence of the second electron. It is as if the second 

electron partially shields the nucleus ; hence the quantity 

is sometimes referred to a s  the p. 
Substituting (3) into (2) leads t o  

This energy is the sam as if there had been two non-interacting electrons 

each experiencing the Coulomb field due to a nucleus of charge 
5 COPT = - - 16 



The exact energy for  He atom is 

-2.9037 

Thus the above simple wavefunction accounts for 98.5% of the exact 

energy! Since the correct  energy of ~ e '  is 

-2.0 , 
the use of the calculated E of (4) leads t o  a predicted IP of 0.84766 o r  

94% of the exact value. Use of the Koopmans theorem leads t o  

99.2% of the experimental value (a better value is obtained because we 

describe the ion badly). 

§3 .6 . lb  Bigger Basis Sets 

The results of using various-sized basis se t s  for H F  calculations 

o n H e a r e l i s t e d i n T a b l e 2 .  I n t h e c a s e s P = 1 , 2 ,  a n d 3  extensive 

optimization of the parameters was carr ied out, leading to  quite short  

expansions. Thus with P = 2 we a r e  within 0.000007 h = 0.0002 eV = 0.005 kcal/mol 

of the H F  limit (P = m). With P = 3 the energy is carrect  t o  6 decimal 

places (comparing to the HF limit). Bear in mind here that the exact 

(nonrelativistic) energy for He is -2.903 so that even the exact HF 

wavefunction is off by 0.042 kk = 1 . 1  eV = 25 kcal/mol. 

The HF orbitals in these various approximations a r e  plotted in Figure 15. 

Note that even though P = 3 and P = 12 lead t o  the same energy (to 6 decimal 

places) there a r e  still noticeable changes in the orbitals. 

The conclusion here is that two suitably chosen basis  functions are 

adequate for  describing He. Such a bas i s  is referred to as 

o r  double valence (DV). 



Table 3-2. Paramete r s  for  H F  wavefunctions of the ground state  of He. E is the total energy, 

E is the orbital energy. The orbital exponents are shown in parentheses while the 

expansion coefficients are not. All quantities are in  Hartree. atomic units. 

a P. S. Bagus, T. L. Gilbert, H. D. Cohen, and C. C. J. Roothaan, unpublished, 1966. 
b ~ .  C.  J. Roothaan, L. M. Sachs, and A .  W. Weiss,  Rev. Mod. Phys. - 32, 186 (1960). 



-2.0 0.0 2.0 

Z- COORD I NATE (BOHR) 

Figure 3- 12, Comparison of Hartree-Fock 
wavefunctions for Helium using 
various (optimum) basis sets. 
p indicates the number of func- 
tions in the basis set. 



0 3.6.2 The GVB Wavefunctions for He 

For He atom the GVB wavefunction is the optimum wavefunction of the 

form 

The GVB orbitals of He are shown in Fig. 13, where they are  compared 
GVB to  the 1s orbital of ~ e +  and to  the H F  orbital of He. We see that +, 

is very similar to  the 1s orbital of He', and that qb is much more diffuse. 

Thus we envision He as having (i) one electron in the 1s orbital of He+ (this is 

orbital @a) experiencing an effective nuclear charge of Z - 2 and (ii) the 

second electron in an orbital ($,,) experiencing an effective charge of Z - 1 
* 

(nuclear charge of 2 but shielded by the @a electron). 

This type of correlation is referred to a s  in-out correlation since when 

one electron is closer to the nucleus, the other tends to be farther away. 

This GVB picture is somewhat different from the H F  model where bath 

electrons are  in the same orbital and one cannot relate the description so  

simply to that of ~ e + .  

* Describing both @a and @b a s  simple exponentials and optimizing the 

exponents leads to  effective charges of 

as expected from the simple pidure. [J. N. Silverman, 0. Platas, and 

F. A. Matson, J. Chem. Phys. -9 32 1402 (1960).] 









A more extreme case is H-, the GVB orbitals for which a r e  shown 

in Fig. 14. Here the first electron (in pa) is very similar t o  a hydrogen 1 s 

orbital and the second electron is barely bound, leading to  a very diffuse $, 
orbital. As shown in Table 3, the HF wavefunction for H- yields an energy 

of -0.487, higher than the energy of the hydrogen atom (implying that H- is 

not stable with respect to  H plus an electron). The second electron cannot 
I 

leave since the H F  orbital is doubly occupied; thus either both electrons stay 

or  - both leave. The GVB wavefunction yields a n  energy of -0.51 3, correctly 

accounting for the stability of H- (the exact energy is -0.527). 

$ 3 . 6 . 3  CI Wavefunctions for He 

The results of several C I  calculations on He a r e  shown in Table 4. 

Analyzing in terms of natural orbitals leads to the results in Table 5. 

Here we see that the 2s, 2px, 2py, and 2pZ natural orbitals provide the 

dominant electron correlation effects. These a re  the only natural orbitals 

containing just one nodal plane. Plots of the 2s and 2p NO'S a re  given in 

Fig. 15, where we see that the higher NOys a re  concentrated in the same 

region a s  the is orbital but with the additional nodal plane (circular for 

@2s and planar for each @ ). 2~ 



Table 3-4. Energies for  CI wavefunctions of the ground state of He atom. 

Number of Basis ~ u n c t i o n s ~  

s p d f g  
Energy 

5 4 

5 4 

5 4 

5 4 

Pekeris  

HE' 

GVB 

a A .  W. Weiss, Phys. Rev. 122, 1826 (1961). 
C .  L. Pekeris,  Phys. Rev. - 115, 1216 (1959). 

Table 3- 5. Analysis of He CI  wavefunction in t e rms  of Natural Orbitals. a 

Natural 
Orbital 

Energy Lowering % of Total 
Millihartrees Correlation Energy b 

2s  

2~ 

3 s  

3~ 

3d 

4s  

4~ 

4d 

4f 

Totals 

a N. Sabelli and 3.  Hinze, J. Chem. Phys., 50, 684 (1989), 
M 

b Total correlation enerqy = 0.0420 hartree.  



NATURAL ORBITALS FOR He 

-3.0 0.0 3.0 

2- COORD INATE (BOHR) 

Figure 3-1 5. The natural orbitals for He 
(Sabelli and Hinze, loc. cit . , 

- 

Table 4). 



Using the five dominant NO'S: Is, 2s, 2px, 2py, 2p,, leads to  the 

wavefunct ion 

where 

This wavefunction has an  energy of -2.8975, just 0.17 eV above the exact 

(nonrelativistic) energy of -2.9037. This wavefunction is sufficiently 

accurate that for  the purposes of this course we will consider (6) as the 

exact wavefunction of He. 

5 3.6.3a Interpretation of the CI Wavefunction 

To interpret the wavefunction (6) we will consider one by one the 

effects of adding any one of the four correlating te rms to the dominant 

(fir st) term . 
The wavefunction 

can be rewritten in a GVB form 



where 

a r e  GVB type orbitals. Thus from 93.6.2 we see that the @2s natural orbital 

in (7) builds in increasing the probabil2y of the second 

electron being at larger r when the first electron is at smaller r (and vice versa). 

Similarly the wavefunc tion 

can also be rewritten as (8)  where 

In (10) we see that when one electron is in the +x direction, the other tends 

to  be in the -x direction. Similar results occur for the @z4, and @zpZ terms. 

The three correlations resulting from the te rms involving p orbitals a r e  

grouped together and referred to a s  2 
The three t e rms  of (6) involving p orbitals can be written as 

= R(l)R(Z)[sin0, coscp, sine2 cOsq2 + s ine1s inq~sin02s inp2 

+ cos 0, cos 0, ] 



where R(i) is the radial part of the orbital Qi and el, is the angle between 

electron 1 and electron 2. Combining with the first  term of (6) we obtain 

With this form we see that the magnitude of the wavefunction is increased 

(with respect to @ls+ls) for 1 4 1 > 90" and decreased for 1 1  90". 

Thus (12) effects an angular correlation of the electrons. 

Each of the four dominant correlating orbitals has one nodal plane 

not contained in* qlS and the correlation effect is across this nodal plane 

(increased probability of electrons being on opposite sides). Starting 

with the GIs orbital, there a r e  just four possible orbitals orthogonal to 

cpl but containing a single ncdal plane, namely the above four. All 

additional correlating terms will involve two or  more nodal planes 

(leading to higher energies) and all a re  relatively u n ~ p o r & t ,  leading 

to a total energy contribution of 6.2 mh = 0.17 eV = 3.9 kcal. For the purposes 

of most of our considerations of molecules an energy e r r o r  of 0.1 eV 

is acceptable, and we will completely ignore these smaller terms. 

Thus we will consider (6) a s  the CI  wavefunction of He. 

---- -- - - 

*Of course @ls has no nodal planes; however, we have worded this s o  

as to be appropriate also for  correlations of more complicated orbitals 

than GIs. 



0 3.7 Wavefunctions for H, 

In this section we will discuss the HF, GVB, and CI wavefunctions 

for H,. 

53.7.1 HF Wavefundions for H, 

In Figure 16 we show how quickly the HF wavefunctions for H, converge 

a s  a function of basis set size (P). The major effects in the orbital shape a r e  

in the bond region. 

In Figure 17 we compare the MO wavefunction ( P  = 2, = 1) with the 

MBS wavefunction ( P  = 2, COPT). Here there a re  significant changes near 

the nucldar and bond regions. 

Comparing the energies in Table 6 we see that P = 6 leads to  an energy 

within 0.00152 h = 0.04 eV = 1 kcal of the HF limit. We consider this a s  a 

good level of accuracy. The P = 6 basis has two (optimized) s functions -t. 

on each H and an (optimized) p function on each H. Such a basis is referred t o  

a s  double valence* (for the two sets of s functions) plus polarization (for the 

p functions) and will be denoted a s  DV-P. 

With even the best of these HF wavefunctions, the energy is 0.04081 h = 

1.1 eV above the exact (nonrelativistic) energy of H,, about the same as the 

correlation e r ro r  of He (and other two-electron ions). 

The HF potential curve using the P = 6 basis of Table 6 (optimized at 

each R but restricted so  that rls = c2,) is shown in Fig. 18. Just a s  with 

the MO wavefunction, the HF wavefunction at large R leads to  very serious 

errors .  Thus at R = 6 a, with the P = 6 wavefunction, the energy is 

* More commonly, double valence is referred to as double zeta. 



Z-COORD I NATE (BOHR) 

Figure 3-1 6, Hartree- Fock wavefunctions for 
H, with R = 1 . 4  a,. p indicates 
the number of functions in the 
basis set. 





I NTERNUCLEAR DISTANCE (BOHR) 

Figure 3-18. Comparison of energies for the MO wavefunction ( I  = 1.0) 

and the H F  wavefunction (six basis functions). 
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E = -0.821 99 (already far  above the dissociation limit, E = - 1. O), and the 

orbital energy is E = -0.32170 (way off from the correct value at large R, 

E = -0.50). For R = a  the HF wavefunction leads to an energy of -0.71542 

which is 7.744 eV above the dissociation limit. * 

§ 5.7.2 The GVB Wavefunction for H, 

The GVB wavefundions and energies for several (optimized) basis sets 

are  given in Table 7. A quite adequate description (0.2 kcal from the limit) 

is obtained using a single (optimized) s function and a single p, function on 

each center. Even the MBS is only 4.1 mh = 0.11 eV above the limit. 

The GVB orbitals a s  a function of R are  shown in Fig. 19. At large R 

the orbitals a r e  atomic-like, but for smaller R the GVB orbital gradually 

becomes more contracted about each nucleus. These readjustments in the 

orbitals are  such that the contragradience in the bond region is about the 

same as for the VB wavefunction. From 1 to 6 a, the GVB orbitals lead t o  

a much greater overlap than the VB orbital a s  shown in Fig. 19. For example, 

at R = 1.4 a,, sGVB = 0.804 a s  compared to  sVB = 0.753. 

53.7.2a Enerm Analvsis 

The GVB orbitals for H, are  compared with the VB orbitals in Fig. 21, 

where we see that the orbitals readjust in such a way a s  to  maintain the large 

contragradience in the bond region while concentrating the orbitals more about 

each nucleus. The GVB energy curves are  compared with other energy curves 

in Fig. 22. 

* 
W. A. Goddard, J. Chem. Phys., 48, 5337 (1968). 



Table 3-7. Energy and wavefunctions for GVB calculations on H, a t  1 . 4  a, . 
Only the @, orbital is given, the Gr orbital is the mir ror  image. 

The same basis occurs on both centers with the orbitals on 

the left first (the basis functions on the right have no exponent 

listed). A p, bas is  function with + coefficient is positive 

toward the second center.  All quantities in har t ree  atomic units. 

a ~ s i n g  l s (  1.262) and 2s(1.191) basis  functions on each center leads to  
E = -1.147804. 

ls(1.3092), 2s(1.1273), 2pz(1. 700), 3dz2(2. 37) basis  functions on 

each center leads to E = -1,151887. 



2-COORDINATE (BOHR) 

Figure 3-19. The GVB orbitals of H, as a function of R (note, the cusps at the 
nuclei have disappeared due to  use of Gaussian basis functions). 
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Figure 3-20. Comparison of overlap, S = 

(@B I @r) for the VB and GVB 
wavefunctions . 



Some of the energy parameters of the BF, VB, and GVB 

wavefunctions a r e  compared in Table 8,while the t: as  a function 
opt 

of R is given in Fig. 23. For { = 1.0 al l  three wavefunctions yield 

an Re f a r  too large (14% to 19%). Optimizing leads to e r ro r s  of 

only 1% to 2% in R and improves the calculated bond energies by -20%. 

It is characteristic that GVB leads to .too large an R while H F  leads 

to too small an R. 

Using the form 

for the GVB wavefunction, we can define classical and exchange terms 

mueh a s  for the VB wavefunction 

etc. This leads to the results in Fig. 24, where we see that the exchange 

term still dominates the bonding. In particular for R > Re the 

E~ is very nearly the same for VB and GVB. Thus the main improvement 

here is in the classical term, E". Similarly, in Fig. 25 we see that 

i t  is the exchange part of the kinetic energy that dominates the bonding 

energy. Again for R >Re we see only minor changes in ?I? between 

VB and GVB. 





INTERNUCLEAR DISTANCE (BOHR) 

F i p r e  3-22. Comparison of the energy curves for MO, HF, VB, and GVB 

wavefunctions of I&. Only two basis functions were used for HF 

and GVB. The results for both c = 1 and Copt a r e  shown. (The 

Copt as a function of R a r e  given in Fig. 2 6. ) The energy is 

relative to the energy of two hydrogen atoms. 



Table 3-8 . Comparison of results on H, for approximate wavefunctions 

using two basis functions. .A11 quantities a r e  in atomic units; 

the energies a r e  relative to two hydrogen atoms at R = =Q. 

H F  VB GVB Exact 
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Figure 3-23. opt for the :HI?, VB, and GVB wavefunctions . 
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Figure 3-24, Comparison of the classical and exchange energies 

for the VB and GVB wavefunctions of H,. 



INTERNUCLEAR DISTANCE (BOHR) 

Figure 3-25. The kinetic and potential parts of E~ for 

the VB and GVB wavefunctions of H,. 



§ 3 . 7 . 3  CI Wavefunctions for H, 

In $3.6.3 we found that in He there are four important correlations each 

involving a correlating natural orbital having one nodal plane 

2s radial 

For H, the HF orbital is nodeless and again we can find four correlating natural 

orbitals each with one nodal plane. These are illustrated in Fig. 26, where 

t henames la  lo,, etc. willbeexplainedbelow. 
g ' 

As R - 0, the H, orbitals in Fig. 26 change smoothly into (we say that 

they correlate with) the He orbitals in (2): 

and hence the correlation effects a re  closely related: 



Dominant Natural Orbital (lo ) 
g 

Left Right 
Correlating Orbital (lau) 

I 

Starboard Port side 
Correlation (Inx) 

Up Down Correlation (In ) 
Y 

In Out Correlation (20 ) 
g 

Figure 3-26.. Correlating orbitals for H,. Long dashes indicate 
nodal planes, solid lines a re  positive amplitudes 
and dotted lines negative amplitudes. 



left-right (lo,) - angular-z (pZ) 

starboard-port side (In,) -- angular -x ( px) 

up-down (In ) -- angularmy ( Py) 
UY 

in-out (20 ) - radial (2s) 
g 

The five dominant natural orbitals for H, are  shown in Fig. 27, which 

should be compared to  Fig. 15 for He. With these five dominant NO'S the 

wave function 

leads to an energy of -1.1699 h. Comparing to  the exact energy of -1.1744 h, 

we see that wavefunction (5) accounts for all but 4.5 mh = 0.12 eV = 2.8 kcal 

of the exact energy. This is quite adequate for our purposes and we will 

ignore all other terms. 

A more complete analysis [E. R. Davidson and L. L. Jones, J. Chem. 

Phys., - 37, 2966 (1962)l of CI calculations on H2 (for R = 1.4 a,) in t e rms  of 

NO'S is given in Table 9. 

For the molecule at Re the dominant correlation is left-right. This 

becomes even more so for larger R. Thus at R = the exact wavefunction is 



NATURAL ORBITALS FOR H, (R = 1.40~) 

Figare 3-37. The natural orbitals of H, for 
R = 1.4 ao. [From G. Das and 
A. C. Wahl, J. Chem. Phys., 
44 87 (1966)l. -' 



Table 3- 9. Analysis of H, CI wavefunction in t e rms  of NO. a 

Natural 
Orbital 

Energy Lowering O/o of Total 
Millihartrees Correlation Energy b 

lau 

lnu 
20 

g 
17r 

g 
30 

g 

2au 
16 

g 

l k U  

40 
g 

Totals 

- -- 

a E. R. Davidson and L. L. Jones, J. Chem. Phys. 37, 2966 (1962). - 
Total correlation energy = 0.04082 hartrees. 



where 

That is, only left-right correlation is present at R = .o . For R < 0.8 a, 

in-out correlation becomes more important than left -right correlation. 

3.7.3a Notation 

For diatomic molecules orbitals a r e  classified in terms 

of their dependence upon cp [the angle of rotation about the 

molecular axis (z)]. Thus 

o => independent of cp 

where q is referenced with respect to the xz plane. 



6 3 .8  Ooen Shell Wavefunctions 

In 52.2  we found that the second and third states of H, have the form 

where the orbitals @ and @, a r e  orthogonal. Such wavefunctions (with 
g 

orthogonal orbitals) a r e  referred t o  as open shell wavefunctions. We will 

occasionally deal with such wavefunctions and will analyze some aspects of 

the wavefunctions here. 

The energies of the wavefunctions are 

where 

The first term of (4) is 

where 

and the second term is 



Thus the energy (2) becomes 

Thus 

'E - 3~ = 2KW. 

Since K > 0, the 3~ State is always below the state. 
gu 

The abwe analysis shows that the wavefundions 

lead t o  an electron repulsion energy 

Thus the significance of the exchange integral K is that it is the change 
gu 

(1) (2) in the energy upon superimposing the exchanged wavefundion qU pe: 
on m:) mi2) . See $2.2.  



Summary: Since the Hamiltonian x (1,2) for a two-electron system 

js invariant under permutation of electrons 

the exact eigenstates of X a r e  each either symmetric or antisymmetric 

under permutation. 

Proof: Consider that q, is an exact eigenhct ion of 

Renumbering the electrons this becomes 

But using (1) in (3) leads to 

Thus from (2) and (4) both *,(I, 2) and .k0(2, 1) a r e  eigenfunctions of 

X (1, Z), bath with the same energy. There a r e  two possibilities here: 

(i) there are two (or more) different (linearly independent) states with 

energy E,or 

(ii) there is only one state with energy E, . 
In case (ii) it must be that 1ltO(2, 1) is proportional t o  vk, (192)  

But interchanging 1 and 2 in (5) leads to  

and substituting (6) into (5) leads to  



Thus 

That is, for  a nondegenerate state the  wavefunction must be either symmetric 

(X = +I) 

qS(2,1) = qS( l ,  2), ( 8) 

or antisymmetric (A = -1) 

under permutation of the electrons, respectively. 

Assuming now case  (i) we define new functions 

Applying 3C we obtain 

and hence the exact eigenfunctions of X a r e  again either symmetric o r  

antisymmetric. QED 



A general CI wavefunction for the ground state of a two-electron system 

can always be rewritten in terms of doubly-occupied orbitals 

where the (x ) a re  linear combinations of the original basis 
P 

functions { x ) . 
P 

Proof: 

Since .qS is symmetric, the coefficient matrix is symmetric. 

If we choose new basis functions {X p = 1,. . . P) that a r e  linear 
ct ' 

combinations of the old basis function {X p = 1, . . . P) P 

then the wavefunction (1) becomes 

where 



The wavefunction *S is unchanged by this transformation of the basis, 

but in the new basis the CI expansion coefficients a r e  different. 

In matrix notation the new coefficients a r e  given by 

Since - C is a real  symmetric matrix, there is always some transformation 

V - for which the transformed matrix - is diagonal. Thus there is always 

a particular choice of basis functions such that 

With this basis there a r e  only P t e rms  in the CI expansion rather than 

p2 as in (1). Thus (2) is a much simpler wavefunction. To find the V 

leading t o  the natural orbitals we must first solve the CI equations t o  

find - C. Hence the natural orbitals do not help u s  solve for the CI wave- 

functions. However, having obtained a CI wavefunct ion, we will immediately 

transform t o  the natural orbitals in order to  discuss and interpret the 

wavefunct ion. 



Here we consider the evaluation of the various energy quantities 

for a two-electron system with both electrons in the same 1s orbital, 

where the orbital exponent i; is variable. 

3.C.1  One Electron Quantities 

First  the normalization coefficient, N, is obtained from 

so that 

The nuclear attraction te rms a r e  



The kinetic energy term is obtained most simply ky noting that 

(where gr is a unit vector in the r direction), and hence 

To check these quantities consider ~ e +  where (: = 2. In this 

case (3) and (4) lead to 

where Z = 2. Optimizing leads to 

and hence 

both of which a r e  correct, 

3. C . 2  Two Electron Quantities 

For He we also need the two-electron interaction term 

where 

is the Coulomb field evaluated a t  r, due to an electron (called 2) in 

the 1s orbital, 



The complication in evaluating such integrals a s  Jls, Is is that 

the integrand of (6) depends on r12. The usual solution is to use the 

Laplace expansion 

where 

andoppositely for r,. With (7), (6) becomes 

cb l! 
2 n 2n 

Jls(l) = c 7 r2 dr2 1 4s (2 )  11 J sin 0 do pl(cos 0) J dm) . (8) 
1 = 0  O I'> 0 0 

The integration over 9 is zero unless P =0, s o  that (8) becomes 

Before proceeding to evaluate J ls( l ) ,  one should notice . 

that (9) is a well-known result in electrostatics. The quantity 

is just the part of the charge distribution inside the point r,. According 

to (9) the total contribution of this spherically symmetric charge distri- 

bution inside r, is the same value 



a s  i f  al l  that charge (Q,) were localized at  the nucleus. Letting 

the quantity 

is the charge on the spherical shell of radius r and thickness dr. 

According to (9) the contribution of this charge to the potential is 

and is the same for a1 r, inside re 

Grunging on, . we find 

2 
1'1 

2 
P1 

2 4 . l r ~ ~  2 Q1 = 4nN r2 dr, e =,-$ j- P 
0 (2Q 0 

where p, = 2(r1. Integrating by parts this becomes 

Similarly the second term of (9) is 

For large r, this becomes 



a s  expected, and for small r, we obtain 

Thus Jls has the form in Fig. 28. 
J l s r  

Figure 3-28. The Coulomb potential Jls (r) 

Using (10) in (5) we obtain 

Problem 1. Carry through the above analysis for a wavefunction 

of the form 

@(I) 6 (2) 

where 

and 

with C and q different. 

3. C . 3  Qualitative Analysis of J1, is 
? 

- 
Defining the average size, r, for  the (bIs orbital as 



we see from (3) that 

An approximate value of J can be obtained by assuming each 
4 - 

electron is a t  i t s  average radius, and averaging over the distances r = F  
between these electrons, assuming each to be on the sphere of radius 

If the instantaneous location of electron 1 is taken to define the z axis, 

then the average position of electron 2 will be approximately in the 

xg plane. This leads to  

- 
r,, = 4'5 f 

and hence to 

The exact value is 

s o  that the above estimate is only about 10% high. 



APPENDIX 3-D. The Exact Wavefunction of HZ 
In order to solve for the exact wavefunction of &+ we use elliptic 

coordinates 

5 = (ra + rb) / R 

= (ra - rb) / R 

cp = azimuthal angle 

a s  defined in Appendix 2-A. With elliptic coordinates, the Hamiltonian for 

H: becomes separable (expressible a s  a sum of terms each depending on a 

different variable), and hence the exact wavefunction of H,' can be factored 

into terms each depending upon different variables, 

For the ground state of HZ a t  R = 2a,, the resulting (unnormalized) 

wavefunction is [ D. R. Bates, K. Ledsham, and A. L. Stewart , 
Phil. TransR09Soc. - A246,215 (1 953)] 

where 6 = (( - 1) /(1 + 5) and Pp (q) a re  Legendre polynomials 

[P, = 1, P, = +(3$ - I),.. .] 

For comparison the MBS wavefunction in elliptic coordinates is 



corresponding to  

A(C) = e -1.23E 

at R = 2a, (the optimum at R = 2a, is = 1.23). At R = 2, the MBS 

wavefunction leads to  < = 1.23, somewhat more diffuse than the 1.485 

for the exact wavefunction. The optimum energy and bond lengths for 

the exact wavefunction* a r e  listed in Table 1. 

Exercise: expand the M(q) expression for the MBS wavefunction in te rms 

of Pe (q) and compare with the Bates et al. wavefunction. 
- 

* When we say "exactw here we are  referring to  the exact solutions of 

(3) and (4). However, (3) and (4) do - not lead to  an exact description of H:. 

The two main assumptions here a re  (1) the neglect of the nuclear kinetic 

energy terms (referred to a s  Born-Oppenheimer breakdown) and (2) neglect 

of relativistic effects. Inclusion of nuclear kinetic energy leads to  

corrections of ardor - , where M is the proton mass (in Hartree atomic 
%M 

units, e . g., 1 / 2 ~  = 0.0003 h = 0.007 eV) . The actual correction to 

the energy at Re from the nuclear kinetic energy terms (see Table 1) 

is +. 00085 h = 0.023 eV = 0.53 kcal, and from the relativistic effects 

is .000005 h = 0.0001 3 eV = 0.003 kcal. In order to  compare with 

experiment such terms must be included (actually, for H: the experimental 

results a re  not yet precise enough to  require these corrections). However, 

in this course we will generally ignore such effects and will refer only to  

results of nonrelativistic, fixed nuclei calculations. 


