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General Comments

Chapters are divided into seclions, for example §1.3, which are usu-
ally partitioned into subsections, §1.3.2, Which are, in turn, occasionally
divided into further subsections, §1.3.2b. Tables and Figures are num-
bered seq:uentially through each chapter as Fig. 1-1, Fig. 1-2,...; however,
within a chapter the chapter number is suppressed, e.g., Fig. 1, Fig. 2,....
Equations are numbered sequentially through each sectioms, e.g., (1},
(R),...; however, when referring to an equation in another section, the sec-
tion number is included, e.g., (1.3-1), (1.3-2),.... Pages are numbered
sequentially for each chapter. Most chapters and some sections start

with a surnmary of the major points.
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Summary:

It is assumed that all students reading this material have had some
course (e.g., the traditional semester of a junior-level physical chemistry
course) pfesenting the basic elements of quantum mechanics with some
treatment of the hydrogen atom, the harmonic oscillator, and angular
momentum. This course '&ill concentrate on the explanation of the struc-
ture and reactivity of molecules using quantum mechanical ideas. The
explanations will stress qualitative and semi-quantitative considerations
with the emphasis on developing principles (based on quantum mechan-
ics) that can be used to make reliable predictions on new syétems

(rather than merely rationalize known results).

Chapter 1 is a review of materals that all students should have had
previously, but with an emphasis on those points that will be important

later in the course.

The basic principles of quantum mechanics are summarized in § 1.1.
A key idea here is that in the classical description of an atom, the elec-
tron would collapse into the nucleus. The critical difference with the
Quanturn description is that the kinetic energy is proportional to the
average value of the square of the gradient of the wavefunction, T =
% <|Vg|?®>. Consequently, for an electron sitting on the nucleus, the
kinetic energy is infinite (since Vg is infinite). This forces the electren to
- rermain distributed over a finife region surrounding the nucleus and
prevents the collapse of the electron into the nucleus. Thus the quantum
deécﬂption is essential for stabuity of aloms. We will find in later
chapters that modifications in the kinetic energy (due to superposition of

orbitals) also plays the key role in the formation of chemical bonds.
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Throughout this course we will be seérching for qualitative ideas con-
cerning the sizes and shapes of wavefunctions and for simple ways of
predicting the energy ordering of the states of a system; A useful con-
cept here is the nodal theorem described in §1.3. Basically, this theorem
tells us that the ground state of a system is everywhere positive [no nodal

planes (zeros) interior to the boundaries of the system)].
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§1.1 BASIC PRINCIPLES OF QUANTUM MECHANICS

In the following section we highlight the basic concepts of quantum
mechanics releirant for this course. All of these ideas should be familiar
to you; good references for reviewing these topics and for outside reading

during the first part of Ch 120a are:

I. N. Levine, Quantum Chemistry (Allyn and Bacon, Boston, 1974),
Second Edition.

H. Eyring, J. Walter, and G. W. Kimball (EWK), Quantum Chemisiry
(Wiley and Sons, New York, 1944).

§1.1.1 The Need for Quantum Mechanics

In order to see why quantum mechanics is so important to chemis-

try, let’s examine the classical mechanical description of the hydrogen

atom
R _®
o7 electron
proton 9e = =€
= +e

p

The total energy is given by
E=T+V (1)

where the kinetic energy is*

* Actually, the total kinetic energy of the hydrogen atom has two terms,
1 2 1 2 \
= (@ )* + m@e) : (3

However, considering the case where there is no net motion (i.e., no net inertia or
momentum) leads to

Pp+Ps =0

and hence (Pp)? = (Pe)? so that (3) becomes



T = =mv? = —p?, _ ()

where m, v, and p are the mass, velocity, and momentum of the electron,

and the potential energy is

. .
VvV = que - e (6)

T T
where q. = -e and g, = +e and the charge of the electron and proton and r

is the distance between them.

The ground state is when the system has its lowest possible total
energy. Any other state (higher energy) is referred to as an ezcited state.
Generally, systems in excited states will eventually decay to lower energy
states,T and we will be interested in the stable (ground) states. The
lowest kinetic energy occurs for p = 0, leading to T = 0, while the lowest
potential energy occurs for r = 0, leading to V = -. Thus, in the classical
description, the ground state of the hydrogen atom has the electron

standing (or sitting) on the nucleus, leading to

Since the charges cancel and the atom has a radius of zero, these atoms
would not combine to form molecules. Thus, in classical mechanics the

atom is not stable! If classical mechanics provided the proper

1
= gl_z—(ipe)z ' ‘ @
where
_;_ = 1_+ 1_ or M = Tnpm‘e = e (5)
Booomp My mp t e, e .

Since m,, ='1836 m,, then u = 0.9985 m,, and for our purposes we can consider
just the kinetic energy of the electren as in (2).

T For systems containing charges, this is accompanied by emission of light.
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description of atoms, and we would not be here pdndering the universe.

The solution to this problem isb provided by quantum mechanics, as
will be discusséd below. Essentially the conclusion is that electrons must
be described in terms of wavefunctions ¢(r), where the shape of the
wavefunction simulianeously determines both the kinetic energy and the
potential energy. [In class‘ical mechanics we can independently adjust r
| and p.] The result is that the state of the system with lowest potential
energy (r = 0) has an infinite kinetic energy preventing the atoms from

collapse.
§1.1.2 INTERFERENCE AND DIFFRACTION OF LIGHT

Before proceeding to a discussion of quantum mechanics, we will

review some relevant features concerning the properties of light.

The early controversy upon the nature of light between Newton, who
considered light as corpuscles, and Huygens, who considered light as
waves, was settled partly on the basis of the fact that (coherent) light
waves interfere, a property difficult to explain except on the basis of

waves. Basically, the idea is that

(i) light is described by a wavefunction
Y(x.t)
that depends upon x and t, for example,

gﬂ—z - R2mvt

Y(z,t) = cos Y

A (where A is the wavelength and v is the frequency),

(ii) detection of the light is proporticnal to the square of the wavefunc-
tion (called the intensily ) averaged over a time long compared with

the frequency
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I(z) = <[y(z .£) P>

where the brackets indicate an average and the subscript t indicates

that the average is over t,
(iii) superimposition of two wavefunctions leads to a new wavefunction
,sbnew = ,‘p?ld + ,Spé:ld,
where the amplitudes add, and
(iv) the intensity for two superimposed waves is [from (ii)]

o (z) = <[y + yga]>,

<[Y8>: + <[Y38]R>y + 2 <yid ygid>,

192 + 198 + Iipe

where the 7$® and /%% are the intensities of the component waves and
Iine is a new interference term present only when the component

waves are present simultaneously.

The interference term in (iv) may be nonzero and can lead to complete
cancellation of the other terms. Particularly impressive interference
phenomena are the diffraction effects found for such uniformly spaced

scatterers as diffraction gratings as illustrated in Fig. 1.
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Figure 1-1.

With a set of uniformly spaced scatterers, the observed intensities are

sharp spikes at particular angles ¥,, where* sin ¥, = n%—. From measure-

ments of sin®¥,s one can calculate 2—. Therefore, knowing the A of light,

we can determine the spacing a or vice versa, knowledge of the spacing a
.can be used with sin 8,4 to determine A. A comparison of the observed

intensity with that expected if light did not interfere is given in Fig. 2.

* To have maxima for ¥, # 0, we must have nA<a; the wavelength must be small-
er that the spacing of the scattering.
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Figure 2-2.

A particularly exciting application of these ideas occurred around
1912. By that time a number of scientists believed that x-rays were elec-
tromagnetic waves like light but with very short wavelengths, A ~ 1 A If
so, they should exhibit diffraction, if a grating could be found having
equally spaced scatterers with uniform separations of ~1 & . In addition,
by 1912 a number of scientists were convinced that atoms do exist
(rather than being just theoretical constructs) and that crystals might
consist of uniformly spaced atoms having separations of a few angstroms.
F. von Lave, an expert on diffraction theory, suggested the experiment of
exposing a crystal to a beam of x-rays and 1ookiﬁg for diffraction spikes.
After a couple of years of work the experiments were successful, proving
both the wave nature of x-rays and the existence of ordered atoms in cry-
stals. Since then, such x-ray diffraction studies have led to enormous
advances in our atomic-level understanding of matter.

§1.1.3 Electrons

The critical experiment* establishing the wave nature of the elec-

trons is that a crystal diffracts a beam of electrons in exactly the same
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was as it diﬁraicts a beam of x-rays, as_illustrated in Fig. 3. Thus, elec-

trons must be described as waves.

X-rays ‘
EEE— : “xtal
(a)
electrons
(b) ’

Figure 1-3.

Indeed, from these observations one can determine the relation between

the wave properties and particle properties of the electrons, namely,
h ,
P=3. (1)

where p = V2mFE is the momentum of the electron and E is the kinetic
energy of the electron, h is a constant (Planck’s), and A is the wavelength

of the electrons (obtained from the spacing of the diffraction peaks}).
Based on this and other experiments, we now know that electrons
should be described as wavefunctions,
¥z .t)
where the probability, P, of observing the electrons at some point x is

proportional to the square of the wavefunction,

P(z) = <[y(z.t)]*> .

* This experiment was carried out in 1928 as a test of the ideas arising from the
theorists developing quantum mechanics. Earlier experiments had, in fact, ob-
served what is now recognized as diffraction; however, the experiments were not
properly interpreted.
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The consequences of this will be pondered in the next section.

§1.1.4  The Schrédinger Equation
In the 1920’s, a number of experiments, such as electron diffraction,
showed that matter exhibits interference phenomena just as does light.
This led to the idea that matter, like light, should be described by an
amplitude function, |
¥(r:t) .
called a wavefunction, such that superposition of two systems %, and %,
leads to superposition of the amplitudes
¥ =%t _ (1)
but such that the probability of finding the total system with particular
coordinates r and t is given by the (absolute) square of this amplitude.
Prt) = [Y(rt)|? = y*(re)y(rt) . (2)
Combining (1) and (2) leads to
P(r.t) = 9" + Y2 + Y1 "W + ¥2°Y:1 .
and hence interference effects--as observed.

Putting these ideas together leads to the basic postulate of quantum
mechanics: Every physical system is described in terms of a wavefunc-
tion ¢ containing all observable informatioﬁ about the system. This
wavefunction is probability amplitude, meaning that a superposition of

states of the system leads to a superposition of the amplitudes,
Y= D% | ()
i .

As part of this basic postulate, we assume that if ¢, and ¥, are two

acceptable wavefunctions of a system, then
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Y = et ceyr (4)

(where ¢, and c; are constants) is also an acceptable Wavefunctioﬁ (this is
called the principle of superposition). ‘

As part of this basic postulate, the probability of the system having

particular coordinates at a particular time is taken as the absolute

square of ihe wavefunction |¢|? as in (2). Since the total probability of

the system being somewhere is 1, we have the normalization condition:

1= [Prt)dr = [y*wdr = <¢ly> ' (5)

(dT is the incremental volume element and this integration goes over all
regions of space). The normalization of the wavefunction ¥ is indepen-

dent of time (being always unity).

The above postulate implies that anything we can know about the sys-
tem must be extracted from the wavefunction. Thus the wavefunction at
some future time, fq + 8¢, is completely determined by the form of the
wavefunction at time fo. In other words, there must be some rule or for-
mula relating ¥(r.tp + 6t) = ¢,(r) to Y(r.ty) = ¢o(r). Such an associatioﬁ

of functions is generally called a transformation and is denoted as

ei(r) = Agg po(r) |

where A, is referred to as th_e operator effecting the particular transfor-

mation from state go to state p;. Similarly, the time derivative of the

must be determined by the form of the

wavefunction at time g, -%7%-

wavefunction at time ¢y, and hence we can write

[%%{o = B y(rto) | ' (6)

where B is called the time evolution operator. For convenience we
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replace B with A = ihB, where H is referred to as the Hamiltonian.

Thus (6) becomes

w2 = Ay, (7)

which is known as the time-dependent Schrodinger equation. In (7), i =
V-1, h is Planck’s constant* (1.054589 107%? erg sec), and H has the
dimensions of energy. Since (7) must also apply to any superposition of

wavefunctions (3), # must be a linear operator,T

HYr+v2) = Hpp + Hys . (8)
We find that the operator A depends upon the nature of the system and
that it is, in general, a function of both position r and time t.

If the Hamiltonian # is independent of time, then the solutions of (7)

have the form

Y(rt) = p(r)T(t) , )
where
%tz-= -iw T(t) (10)

* Actually, the original Planck’s constant Ais
h = 2rh .

However, we will use only h and refer to it as Planck’s constant.
T From (4)

8 (8 8
zha—t = ¢ [zh%}-&-ca zh%l;i-] = c Ay + c2HY:

where (7) was applied to ¥, and ¥,, respectively. Applying (7) directly to 9 leads
to .

ih 562‘ = H(c,¥, + ca¥e)

and hence (8).
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and

Ar)p() = twp(r) . (11)
Equation ('10) has the solution |
| T(t) = et | (1)
so that (9) becomes

Y(rt) = g(re™* (13)
where o(r) is yet to be detefmined from (11).

At this point we recall the quantum mechanical interpretation of two
experiments. In the photoelectric experiment, light behaves as a stream

of particles (called photons), each having a quantum of energy
E = f , - (14)
where
w = Bnv = 2rc/ A

is the angular frequency of the light. This suggests that the fw in (11) be
considered as the energy in (14). In electron diffraction, the diffraction
pattern for electrons with momentum p and energy E is equivalent to the

diffraction pattern for light wi‘;h wave vector

ko= _r/ A (15)
and angular frequency o, where w is given by (12) and k is given by

p = B . (16)

Thus we postulate that the energy and frequency are always related by

(14), leading to

Yrt) = ¢(r) e E/A (1)
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A(De(r) = E (o) . (18)

The latter equation is known as the time-independent Schrodinger equa-

tion and is the fundamental equation determining chemical bonding.
§1.1.5 The Form of the Hamiltonian

In (18) we see that there is a relationship between the operator &
and the total energy of the system, E. In classical mechanics, the opera-
tor associated with the total energy of the system is the Hamiltonian, H¢,

which is given by
He = T 4yt

(for nondissipative systems), where T¢ and V* are the kinetic and poten-
tial energies. We will postulate that there are quantum mechanical
operators T and ¥, corresponding to the classical quantities T and V, such

that the quantum mechanical operator A is given by

B=T+7V,
and we will refer to & as the Hamiltonian operator. For a system in
which the classical potential V* is velocity-independent [that is, a func-

tion of the coordinates of the particle only], we will postulate that the

quantum mechanical operator corresponding to ¥(r) is just the classical

function

V) = V(o) . | (19)
Thus for the hydrogen atom,

o o @?

Vir) = - pra

For a particle moving in a potential V{r)%, the kinetic energy (classically)

is



pel = 12
Té —p? (20)

where p = mv is the momentum of the particle. We will postulate that the

quantum mechanical Hamiltonian operator corresponding to (20) is

= 152, (21)

2m.

where p is the quantum mechanical operator corresponding to the

momentum.

Now we need the form of the quantum mechanical momentum opera-
tor, p. A plane wave of wave vector k and angular frequency « has the

form
p(z t) = el —et) (22)
and hence the wave vector is given by
1L g
ko= @ [7', Ezﬂ-] '

From the diffraction experiments it was found that p = Ak, leading to

b od
i dz

Thus we postulate that the momentum operator p, corresponding to

_ L
P ¥

momentum in the x direction is given by

S _h o
bz = i Bz (23&)
and similarly for the other direclions
s - h o
5 - B D
Pz = T 35 - (23c)
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Just as the classical momentum is a vector quantity, the three quantities

in (23) are considered as the three components of a vector operator

p=12v | (24)

where V is the gradient operator.

Now we construct the kinetic energy operator. Since

[ a2 2 2
a+a+a}

R = . =
V=YV ot g 727 - (25)
we obtain
SINSIE
[ 8 52 52 ]
= —-RW” = —R
oz®  8y?  02?|
and hence
5 - 1 s2_ _ B o
T = 5—p%= -5V (26)
From (18), (19), and (26) we obtain
g = - B o
H = - V2 + V(r) (27)

as the explicit form of the Hamiltonian for a pai‘ticle of mass m moving in

a potential V{r).

Basically, the Schriodinger equation (8) arises from considering the
time evolution of a system, and the Hamiltonian B describes how the sys- _
tem changes with time. If we change the system, say, by applying an
electric or magnetic field, this chaﬁge is manifested by a change in the
Hamiltonian &. Such changes in A lead to changes in . With ‘suitably

ingenious experiments, it is often possible to determine something about
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how ¢ changes in response to the field and thereby something about the
form of ¥ before changing &. In this way we can determine various pro-
perties of 9. Ultimately each physical property can be related somehow
to some type of ychange in the Hamiltonian of the system and hence to
some (Hermitian) operator,

G, = AH .

§1.1.6 More on the Schrodinger Equation

§1.1.6a The Hilbert Space

Given any two functions ¥, and ¥, we can generate from (3) an

infinite number of wavefunctions

Y = O+ Coye

by using various €, and C,. In addition, there is an infinite number of
choices for the functions ¥, and ¥,. Even so, the postulates of quantum
mechanics lead to constraints on the functions, and hence we need not
consider every wavefunction. For example, from (5) we need consider
only wavefunctions for which the integral of the square of the wavefunc-

tién is unity <y|¥> = 1. Of course, given some wavefunction ¥ with
I> = fdriy®=a
with finite (nonzero) a, we can always define a new function*
¥ =9/ Va
that is normalized, i.e.,

C<YlY> =1

On the other hand, we need not consider any wavefunctions ¢ for which

* Note that @ can never be negative.
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the integral f d7 |¥|? does not converge. That is, we need deal only with
square-iﬁtegrable functions. The set of all possible such functions (satis-
fying whatever boundary conditions are being imposed) is referred to as
the Hilbert space (for systems having this particular set of boundary con-
ditions). Thus the Hilbert space is merely the collection of all possible

wavefunctions for our system.
§1.1.6b Hermifian Operators

In Appendix A we consider the implications of requiring that the

norm of the wavefunction be unity,
<gly> =1
and hence independent of time for any superposition of wavefunctions,
Y=Y+

The conclusion is that for all possible functions ¢; and ¢; the Hamiltonian

operator H must satisfy the condition
SarE) s = [ dry(Hy) |
which we denote as
<THW) 19> = <y [Hlyy>
Such an operator is called Hermitian.

The expectation value

<y[H|y>
<yly>

of a Hermitian operator is always real (see Appendix A). Hence the

energy

= <Y Hly>
<yly>
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in the Schrodinger equation must be real.

In Appendix A we show that the momentum operator, p = (f/1)V, and

the kinetic energy operator, T = (1/2m)p?, are hermitian. Similarly, any

function of coordinates, V(r), is hermitian, so that the Hamiltonian in (27)

is also hermitian.

§1.1.7 Analysis of Kinetic Energy and Potential Energy

In the above sections we have established the Schrodinger equation

1-7¢=E;a.
where

B=T+7V

A« 2

T = sz2

V= vr)

Multiplying both sides of (18) by ¢* and integrating leads to
<¢p/H|p> = E<ple> = E ,
where
<p|Hle> = fd‘r;o*f?rp
and
<plg> = 1.
Defining the numbers T and V as

- A [
T = <olTlg> = [arenn) |- 5% olr)

V = <¢|Vle> = fdrer(r)V(r)er)

(18)

(28)

(9)
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we see that the total quantum mechanical energy E can be written as a

sum of quantities
E=T+7 | (30)
interpreted as a kinetic energy (7) and potential energy (V).

The quantity (29) can be rewritten as

V = dep(r)V(r) .

where

p(r) = ¢*(r)e(r)
is the probability of finding the system in the volume element dr near |
configuration r. Thus V corresponds to the average of the classical poﬁen-
tial energy, weighted by the probability of the electron being at any par-
ticular position.
As written in (6), T does not seem to bear much relation to the classi-

cal kinetic energy. However, in Appendix B we show that

<g|=-Vle> = <|Vp|?> , (31)
so that (28) becomes
. R . : <lag [2
T= g <IVI>N= g ST 3 (32)

Since § = (b/1)V, we see that

— _ 1 - 2
T = —-——2m<|pga] >,

which can be compared with the classical kinetic energy, T = 1—p2,
Zm.

suggesting. that <|pg¢|?> corresponds to the square of the classickal
momentum. Throughout this course we will find (32) to be a useful way to

think about kinetic energy. This expressidn says that big gradients or
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slopes lead to large kinetic energy, and hence the best kinetic energy
occurs for the smoothest functions. Thus, comparing the wavefunctions
in Fig. 4 (all normalized), we see immediately that ¢. has the highest 7,

‘while ¢; has the lowest.*

P\

"’a | l"b 1l"c

Figure 1-4.

The essential diﬁ'érence between classical mechanics and quantum
mechanics is that in classical mechanics the kinetic energy and the
potential energy are independent (one is determined by momentum, the
other by position), whereas in quantum mechanics 7 and V are simul-
taneously determined by the wavefunction, with the kinetic energy pro-
portional to the average square of the gradient of the amplitude function.
It is ’Lhe balance of trying to find a wavefunction leading to both the
lowest T and the lowest V that is responsible for the stability of quantum

mechanical atoms.

* Of course, (32) assumes that <g|p> = 1.
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§1.2 The Ground State of Hydrogen Atom

In this section we consider the ground state of the hydrdgen atom,
that is, an electron with mass m and charge -e interacting with a nucleus

of infinite mass and charge +Ze. Classically, the energy is given by

E—Ez_zez

T 2m r

where r is the distance of the electron from the nucleus. Thus the
ground state (lowest energy) is for r = 0 and p = 0, leading to E = -=.

That is, the classical H atom collapses to a point.

Quantum mechanically, the Hamiltonian is

2 e Ze*
A= 1

and the energy is obtained by solving the Schrodinger equation,
He(r) = E¢(r) . ()

We will find that the quantum mechanical form of the kinetic energy

keeps the electron from collapsing into the nucleus.

In these sections we will obtain the wavefunction ¢(r) for the ground

state of H atom. The result is that
p(r.8.9) = Nee™" ,
where

No = V&/n
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ag = B/ me? .
In §1.2.3 we define atomic units where
A=1, m=1, le] = 1.

In these units, the unit of length is

I bohr = lag = K/ me® = 0.520177 &,
and the unit of energy is
1 hartree = 1lhg = e?/a; = met/BR = 27.2116 €V = 627.510 keal/ mol.
In these units, the Hamiltonian for H atom becomes
7

A=- a_ 4
H A% —

the energy becomes
E =-%2%,
and the scale parameter becomes
¢ =27 .

Before going into the details of the wavefunctions of the hydrogen

atom, we will consider why such an atom can exist.
§1.2.1 Atoms Exist!

In §1.1.1, we found that the classical description of the atom leads to

collapse,
T=—5—p?->0 as p »0
2m
2
V-85 - as 7 -0,
T

Therefore, the lowest energy state is for the electron sitting on the
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nucleus. Since the charges cancel, this is like not having an atom. Now
we will look at this problem with quantum mechanics. A majof difference
in quantum mechanics is that both T and V are determined by the same
quantity, the wavefunction, whereas in classical mechanics, T and V

involved independent quantities p and r. Thus,

_ < e? >
V=<9 -—10>
< T
| (3)
= _ o
= —-2m<[V{>]>.

Consider now the sequence of similar wavefunctions in Fig. 5.*

* To be specific, consider the normalized function
® = Ne ™R | (4)

where** N = 1/VnR3. Thus, if R is very large, ® decreases very slowly with r,
leading to the delocalized function a in Fig. 5a, while with very small &, ¢ de-
creases rapidly to zero for small r, leading to the localized function in Fig. 5c.

*¥
ki) T oo L)
<P> = fsin ﬂdﬂfdﬁf@zradr = 411'N2f'r2d7' g ~R(r/R)
0 “n 0 0

5P =
= 47rN2[‘g;] fpzd.p e = N3RS = 1,
° :

where we usedfe"’ prdp = m!
()
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() ——’/;____,.k (b) A (e /&
~ad 2

R R
delocalized localized
-  largeR —. small R
V slightly negative V very negative
T slightly positive T very positive
Figure 1-5.

Clearly, V becomes more and more negative (lower energy) as the eleé-
tron is localized closer and closer to the nucleus (just as in classical
mechanics), and in the limit the wavefunction leading to the best V is
localized at the nucleus (F = 0). However, this localization of the elec-
tron near the nucleus now leads to a very large and positive T. Since V
and T have opposite effects as the electron is concentrated near the

nucleus, we need to be a little more quantitative in the analysis.

First we define an average radius R as

Sl b2 1
2@ ;@; = “R—,
leading to
_ 2
V= -%-, (5)

Consider now some wavefunction, say b, in Figure 5 as the reference

wavefunction (with F = 1 in some units) and let
V,and T,

be the energies for this wavefunction. Using this reference point, we will

examine how V and T change as the wavefunction is squeezed or
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expanded.*

From (5) we see that

Vi (6)

In order to see how kinetic energy changes, note that each term has the

form
< 2>
<o s
<l 8z | >
sothatT_
12
7 = e T, . 7
R R] 1 (7)

Thus, T becomes small for delocalized smooth functions (large R), and T
becomes large (and positive) for localized functions (small ). From (8)

and (7) we see that
T _ (]I (8)
V RV

(note that T is always positive and V is always negative).

Consider first the case as B -+ =, then from (6) and (7)

w3l

-0
V-0

and

* The technical term is scaled.

1 Basically, the gradient is proportional to }—and hence the gradient squared is

2

1
proporticnal to | = .
[E}



- 30 -

as expected. };“or sufficiently lafge R (that is, R » |T/V,|), we see from
(8) that

Vi > ﬁ"l .
vand‘hence the total energy

E=T+7V

" must be negative. However, for very small B (that is, B « |7/ 7]|), we
see from (8) that

IT| > |V],

and hence the total energy must be posifive. Thus, the energy of the
wavefunctions in Fig. 5 must behave as in Fig. 6 as a function of R (i.e., as
a function of the size of the wavefunction). That is, the lowest energy
(corresponding to the ground state of the atom) occurs at a finite size,

R = Ropr. In quontum mechanics the hydrogen atom is stable!

E
4L
_ T
(l
E=0 '\RizRy > E
Figure 1-6.

In the above example, we considered just the stretching and
corﬁpression of the one function considered in Fig. 5. However, the same
result is obtained independent of ﬁhe shape (namely, the optimum energy
occurs for finite ®), and hence trying all possible shapes we will eventu-
ally find the optimum wavefunction and its optimum R. This optimum

wavefunction is discussed in the next section.
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Summarizing the above discussion, we find that: The potential
energy wants the wavefunction to be localized at the nﬁcléus. Thus,
starting with a delocalized wavefunction (Fig. 5a), the total energy drops
as the wavefunction is localized closer to the nucleus. This localization
that aids the potential energy leads concomitantly to a more repulsive
kinetic energy; however, for sufficiently diffuse wavefunctions, potential
energy always wins.* On the other hand, the kinetic energy increases
quadratically as the wavefunction‘is'compressed, while the potential
energy only drops linearly, so that' eventually the increase in Kkinetic
energy will prevent any further contraction of the wavefunction. For the
optimum wavefunction there is a balance in these potential energy and
kinetic energy terms. One might say that kinetic energy provides a pres-

sure that keeps the atom from collapsing.
§1.2.2  The Ground State Wavefunction

Now we wish to obtain the wavefunction ¢{r) of the ground state of H

atom,
Ho(r) = Eo(r) | (2)
where

2
_f.lz_vz _ Ze . (1)

H=—2m r

The Hamiltonian in (1) is independent of orientation of the atom in

space, and hence the eigenfunctions will have the form
f(N)Z(s.9) | | (9)

where f is a function of r only and Z(%,¢) is a function of angular coordi-

* We are assuming here Coulombic attractions.
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nates only. Since kinetic energy favors having smooth wavefunctions, the
ground state wavefunction should be as devoid of wiggles as possible.

Thus we will take Z(8,¢) as a constant leading to

eI - Ere) = B (10)

=
for the Schrodinger equation.

There are straightforward mathematical techniques for solving (9);
for example, see Appendix D. Here we will use a physically oriented
approach to examine some features of the solutions. At r = =, the poten-

tial in (1) is zero; thus the bound states of (2) have negative energy,
EF < 0.
Now comnsider a very large r so that the Coulomb term is negligible,

Ze?
-

< |E| . (11)
In this case the Schrodinger equation reduces to

-2 i) = Br )

2m
Of
VBilr) =+ &7, (12)
where
¢=-2p (13)

1w

(note that E is negative and hence ¢ is real). Consider a point along the
positive x axis. Since r is very large, (8f/8y) ~ 0 and (8f/98z) ~ 0.
Thus (12) becomes

2
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Consequently,
Fo=e

(f = e*¢* is also a solution, but this function is not normalizable). Since

f is spherically symmetric, the wavefunction at very large r is of the form

flr)y =e* . (14)
Energy
A
|
[
Region energv= ) Region
v rgy= 0 2
satisfying <— 1 ->»satisf
a oo N e e
!

classical turning point

_ Ze®
Ve=-5

Figure 1-7.

In Appendix D we show that the wavefunction (14) is an eigenfunction

of (10) for all r if ¢ is chosen so that

_Z |
¢ = 2 : (15)
where
aq = H2/ me® . - (18)
From (13) and (15) we have
SR e _ ¥ 22 _ 1 Z%°
E=-gn¢ =" 2m ag 2 ag

and hence



-84_

) 2
E = -y} z¢| = (172)
Qg
Normalizing the wavefunction (14) leads to (see Appendix D)
Y B.g) = Noe Z7% (17b)

where

Ne = VZ3% maf . (18)

This wavefunction is plotted in Fig. 8.

#(0,0,2) #=0,05 —

A (3™ ™
1 1 1

$, = = &=010 —
[} ﬁ (ao)s 2 (a°)3 2
HNE
1
@ =28,
7
t i
: > 2 z=0
zZ = -ao z =0 zZ= ao
R . b t lot of the H atom orbital.
(a) Line plot of the H atom orbital. . gg?aggtpcontours differ by 0. 05 a.u.
Figure 1-8.
The average radius of the wavefunction (16) is
< >
-_l,—- = <1p L. ¢> = ..Z_
E < | T > Co
so that
- a
R = —29— . (19)

where ag‘ = ¥/ me? is referred to as the Bohr radius (or, more simply, the
Bohr) in honor of Niels Bohr. Substituting into (15) leads to

E=-% 2;2 . (20)
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which can be compared with

_ < 2 > 2
V9T
Thus
E =%V
and

’ - 2
T=E—V=—%'V=%Z§ .

Equation (20) provides an easy way to remember the proper energy

expression (it is just half the total potential energy).

- For the hydrogen atom (Z = 1), the above equations become

2
= -y &
E=-%E (21)
Vo g
V = o (22)
7 o= R « S U
T =+% - * o Py
where
LL/r> = L
Qo
<[VgR> = L
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Energy
L\ .
Average Distance of Electron from Nucleus

(l 2 l) = ao)

Classical Turning Point
7 ih o T EO - 29
V=90—> . > distance along z axis

1 1
| 1

V - -* 62 : : >,

=g, ) ] energy of ground state
'ez » 1 ! (E = -3 ez/ao)
V=- tw —_—
Potential energy (V = e’/1)
Figure 1-9.

In Fig. 9 we show the potential energy as a function of distance. Imagin-
ing a classical particle with this same energy E moving in the potential

V(r) = - (e®/r), we would find the particle bouncing back and forth from z

2 2
= -2aq to z = +2aq. The kinetic energyisT=E-V=E + e =-.L2 2
T Rag T

For r > 2aq, we would have T < 0, but this is not possible classically since
T = % mwv? must be positive. Thus the classical limit for the motion of the
electron is |z] = 2ayp, at which point the velocity has reduced to zero. In
the quantum description there is a finite probability (but not large) of the

electron being farther than 2a, from the nucleus.

Note that the wavefunction (17a) is positive for all finite x, y, z. Since
it is never zero for finite distances, we say that the wavefunction is node-

less.

§1.2.3 Atomic Units

" As mentioned above, the "size" of the atom is R = EZE’—; thus a natural

unit of length for atomic problems is the bohr radius

ag = e . (R3)

me?
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The quantity (e®/a, = me?/%) in the energy expression (17b) has
units of energy. It is referred to as the hartree (in honor of D. R. Hartree
who first suggested the atomic system of units in 1927)* and is denoted

as hyq,

e _ me?

ha =
0 ac {12 1

so that the energy of the hydrogen atom (17b) becomes
E = —%Zzho- (25)

Throughout this course will encounter quantities such as aq = B/ me®
corresponding to a length, ho=e?/ay=me*/ K corresponding to an

energy, and dimensionless quantities such as

= = b (26)
fc  137.03604

(the fine structure constant).

We will find it convenient to use a particular set of units, called

atomic units, ** where

me = 1 : (R7)

We use these units because they simplify many of the equations of quan-
tum mechanics and give a reasonable order of magnitude (near unity) for

the properties of molecular systems. Some useful conversion constants

*D. R. Hartree, Proc. Cambridge Phil. Soc., 24, 89 (1927).

** Sometimes called hartree atomic units t0O distinguish from other occasionally
used atomic units; see Appendix E.
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are included in Appendix F.

With atomic units, the Hamiltonian for the hydrogen atom becomes

H=-yw-%2 (1)

T

and the ground state wavefunction become

Y(rS.p) = Neg 7 | (17)
where
No = VZ¢/Tw (28)

and the ground state energy becomes
E = -%27% . (17)

§1.2.3a (Conversion Factors

In order to compare the results of quantum mechaniés (expressed in
atomic units) with those of experiment (expressed in cgs units), it is
necessary to become facile at converting between those units. To do this
most simply it is sufficient to remember a few basic conversions (e.g.,
energy and distance) and to rewrite the expressions involving other quan-
tities in terms of these basic units before converting. Thus, from (17) the

ionization potential of the ground state of hydrogen atom is

IS
In atomic units this quantity is
IPy = 0.5h, ,

and experimentally it is known that*

* The numbers in parentheses indicate the estimated limits of error in the last di-
git quoted, the standard deviation.
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[Py = 13.605805(37) eV **
Thus,T
ez

lhe = o = 27.21161 eV . (29)

Similarly, using the known values of 4 m, and e

h = 1.0545887(58) x 107%7 gm cm® sec™!
m, = 9.109534(47) x 10728 gm (30)

e = 4.803242(14) x 1071% gm* cm¥? sec™! ,

we find that the atomic unit of length is

K
= = 0. 1 4 .
lag p—- 0.52917704(44) A (31)

Another useful relation is the fine structure constant

o = i = 1
he 137.03604(11) '

a dimensionless constant. In atomic units, e = 1 and A= 1, and hence the

speed of light is
c = 137.03604a.u , (32)
in atomic units. From the cgs value of c,
¢ = 2.99792458(1) x 10'° cm/ sec |,
we find the atomic unit of time (denoted q)

to = 2.41888 x 10717 sec . (33)

** This is corrected to correspond to a nucleus of infinite mass.

t An underline indicates that there is uncertainty in the underlined number.
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The biggesfl.‘disadvantage iﬁ using atomic units is that the various
quantities such as 4, e, and m, will be missing from the equations, making
it difficult to convert to cgs units. The best way to convert is to rewrite
the quantity of interest in terms of energy, length, and velocity quantities
and then to use the above conversions. For example, what if we want to

evaluate the Coulomb interaction between Na* and Cl™ at 10 13:‘? We con-

vert R to bohr

_ 10 -
R = gghors = 18.897a, .

Since |e| = 1, the energy of interaction in atomic units is

E = — = = —-0.052918 A¢ .

|-

We can now convert back to electron volts,
EF = —-0.052917x27.2118 = —1.43998 eV .

In general, then

plev) = TLEL98 (04)

It would be instructive to calculate other quantities in terms of
atomic units, e.g., what is the average momentum of the electron in the
ground state of H? In Bohr's model, how long does it take the electron to

orbit the atom?
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§1.3 THE NODAL THEOREM

Even without carrying out detailed calculations of the eigenfunctions
for a system, it is often possible to make some general conclusions con-
cerning the ordering of the states by considering their nodal structures
(i.e., the loci of points for which ¥ = 0). Here we will develop some of the

general considerations for such analyses.
First we consider a one- dimensional, one-particle system with Ham-
iltonian

I

H=—'2—ﬁl—d—x—2—+ V(Z). (1)

where M = m/# and V(x) is some function of x depending only upon the
spatial coordinates.* If this potential contains bound states, then we can

prove the nodal theorem:

i) The ground state wavefunction does not change sign (i.e., has no
nodes);

ii) The bound state with n sign changes (n nodes) has‘ a lower energy
than the state with n + 1 sign changes (n + 1 nodes).

That is,

Ey < E,
(2)
En < En+1 ]
where n is the number of nodal points (internal to the boundaries). In

the case of a sufficiently singular potential, some inequalities in (2) may

be equalities.

* [V(x) is independent of momentum and spin and is not an integral operator].
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The nodai theorem is proved in Appendix C. Here we will provide

sorne“ intuitive reasoning concerning this theorem.
§1.3.1  The Ground State is Nodeless
Consider ﬁrét ¥,, the lowest eigenstate of the Hamiltonian
a Y1 = Ei¥e

having one sign change as in Fig. 10a.

@ oy ®) o

Figure 1-10. Illustration for the Nodal Theorem.

From %, we can form a wavefunction gq = |¥,| (not necessarily an eigen-
function of A) that has no sign changes, as in Fig. 10b. Since ¥, is nor-

malized, then ¢q is also normalized,
<polpo> = [dzlpoz)|? = fdz|yi(z)® = 1,
and the energy of ¢ becomes

<go| - -t 2%
o\ T 2 4z

[
P>
g0 = <golH|po> = i’?’o;’*'<</’0|VWU> .

- The potential energy of ¢g is the same as that of ¥,

<po| Vige> = [ dz V(z)lpo(2)|? = [ dz V(z)|9a(z)I? = <¢u|VI¢s> . (3)
From Appendix B the kinetic energy of ¥, can be expressed as

< 2

1 d
<Y
<

" Em @

> L
%; = ‘z‘ﬁﬂw/ﬁi >
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2

-l T %
T2 de dz
But
Jaw |20 2|4 [
e | Be] - w e |2

since the integrands are equal except at one point (zy). Thus the kinetic

energies of ¢g and ¥, are equal,

(4)

and consequently from (3) and (4) the total energies of ¥, and ¢q are

VVV

equal,
go = <po|Hlpo> = <1 H|¥> = Ey .

That is, given any eigenfunction ¥, of H that changes sign, we can con-
struct a function ¢g which does not change sign and yet has the same

energy.

Now consider a new function gy identical to g, except that it is
smoothed in the region very close to the position of the node c. If the
potential is not singular at this point, the function s can be chosen to

have the same potential energy (and normalization) as g,

<ol H|%0> = <wo!Vige> .
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7
(o]

¥ %
c
[
(a) (o)
Figure 1-11.
However, since
dPg { dgo
dr | dz

in the region near c, go' will have a smaller kinetic energy than g,

<| 4= B> R>
1 ¢| 2% 1 <’ dyo S
2M <| dz > 2m < dz >

Consequently, the energy of %, is lower than that of ¢,

Eo<8°=E1.

(5)

The best (i.e., lowest energy) nodeless (i.e., non-negative) wavefunction

has an energy, £y, no higher than %, and hence

Eo < E, .

(6)

Similar arguments can be used to derive the other relations. Thus, for a

general potential we expect the bound solutions to increase in the

number of nodes as E increases, as in Fig. 12.
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Figure 1-12. Illustration of the nodal patterns of successive states of a
géneral (one-dimensional) potential.

§1.3.2  Multidimensions

In two dimensions, a wavefunction that changes sign will have a line
of points with ¥ = 0 (a nodal line), and for three dimensions there will be
a surface of points with ¥ = 0 (a nodal surface). Just as in one dimension,
the ground state will always be nodeless. However, for multidimensions
one can no longer use the nodal theorem to order all states. Thus, in two
dimensions we can construct three orthogonal wavefunctions (all orthogo-
" nal to the ground nodeless state), each with one nodal surface, as illus-

trated in Fig. 13.*

* We will, in this section, use the same noctaticn nl as for states of the thrée-
dimensional H atom. '
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(a) 2s function  (b) 2;:y function (c) 2px function

Figure 1-13. Two-Dimensional States with One Nodal Line.

If the potential energy is independent of angle, the wavefunctions in Flg
13b and 13c will have the same energy; however, the wavefunction in Fig.
13a may be higher or lower than the other two, depending on the exact
form of the potential. Even worse, we cannot use the nodal theorem to
determine whether the 3s function in Fig. 14a is above or below the 2p

functions of Fig. 13b and 13c.

+
|

e
N

T

I

(a) 3s fungtion {b) 3py (c) 3p, (d) 3dxy
Figure 1-14. Two-Dimensional States with Two Nodal Lines.

‘The clue to which comparisons can be made and which cannot is
apparent from the way that the one-dimensional theorem was proved in
the previous section. Start with the optimum wavefunction of some nodal

structure, say Fig. 14b, and change the sign on opposite sides of a single
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nodal surface to obtain either Fig. 15a or 15b, each of which has exactly

the same energy as Fig. 14c.

(a) + (b) +

Figure 1-15.

The wavefunction in Fig. 15a is an upper bound on the 2p; wavefunction of
Fig. 13b, and the wavefunction in Fig. 15b is an upper bound on the 2s

wavefunction of Fig. 13a.

(a) (b) !

R A
=N o=
————— e —— ———— - ——
o/ O
~_t_~- N b7
{ l
1 l

Figure 1-16.

Similarly, starting with the 3s wavefunction of Fig. 14a, we see that
the wavefunctions in Fig. 16 have the same energy and are upper bounds
to the 2s wavefunctions of Fig. 13a. However, there is no wavefunction to
compare the energy of the 3s wavefunctions with those of the 2Z2p
wavefunctions. Continuing in this way, we can derive the following rela-

tions:
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T 1s < 2s<3s<4s ...

| 1s(2p<3p<4p...
Bs < 3p ...
3 <4p ..

2p <3d <4d ...
3p<4d...,

etc.
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§1.4 VIBRATION AND ROTATION
Throughout this course we will focus upon the electronic wavefunc-
tions for molecules. Thus for an N electronic wavefunction, we determine
v (1,2,...N) ,

with energy

el el
E=<~If H\Ir>,

< el l i,el >

where A is the Hamiltonian for the system. The electronic wavefunction
and its energy will depend upon the geometry of the molecule. For each
geometry, we solve for the optimum wavefunction and energy at that
geometry. For a diatomic molecule the result is a total energy that is a

tunction of R (internuclear distance), as indicated in Fig. 17.

E=-D =3 [---nee

Figure 1-17.

As the nuclei move together or move apart, we imagine the electrons
readjusting at each instant to reoptimize for that particular R. For a clas-
sical system, if we started at some particular R, say point b, the nuclei
would move apart until they reached point ¢ and would then come
together till point b and would continue oscillating between these points
(assuming no friction). Starting at point d, the R would continue increas-
ing until R = =. On the other hand, if we started at point e, the system

would stay still. Thus point e is called the equilibrium bond distance
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(Rs). Starting with the molecule at equilibrium, R,, the energy to pull it
apart (to break the bond) is called the bond energy, D. ‘

For energies below the limit at infinity, we can think of the system in
terms of two masseé (each corréspondmg to a proton) connected by a
spring of length R,. However, in quantum mechanics, this spring can
never be completely at rest. The nuclear motions are described in terms
of wavefunctions, just as are the electrons, and the kinetic energy of the
nuclear motions depends on how localized the wavefunctions are. To
localize the nuclei at exactly R=R, would imply an infinite kinetic
energy. The result is that for the ground state the nuclear wavefunction

has the form
¥, C(R)

—4—————R

Re

Figure 1-18.

That is, the most likely R is R,, but the nuclei have a finite probability of
being found at other R near R,. The result is that the energy of the
molecule is higher than the absolute minimum (E = -D,) in the energy
curve by an amount referred‘ to .as the zero-point energy. This lowest
state, Fig. 18, is referred to as the ground vibrational state (#"?, with v =
0), and one thinks of the molecule as vibrating back and forth with a fre-
quency vg.

At the bottom of a potential curve, the slope of the energy curve is

zero and the curvature is positive, so we can write

E(R) = E(R))+ %k(R = R)? | (1)
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where k, the curvature* at the bottom of the well, is called the force con-
stant. In this approximation (called the harmonic oscillator approxima-

tion), the vibrational frequency is given by

w= 3=V E (2)

where u is the reduced mass

_ MM
H = MI‘+ MZ (3)

and M; and M, are the masses of the two nuclei. In this case, the zero-
point energy is given by
¥hug (4)

(where h is Planck’s constant). Thus the energy of the ground vibrational

state is

where
Do = D, —%huvp . (5)

The quantity Dy is the actual energy to break the bond starting with the
molecule is in the ground vibrational state, and it is the quantity that |

would be measured experimentally.

In QM, the excited vibrational wavefunctions must be orthogonal to

the ground wavefunction, leading to the form in Fig. 19,

2
e - | 2°E
oR?

R,
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#Vib

1

;
ﬁe
Figure 1-19.
for the first excited vibrational state (v = 1). The excitation energy is
Ei-Eg = huyg . (6)

(in the harmonic approximation). The separations between vibrational
states, as in (6), can be determined experimentally, thereby providing
experimental values for the zero-point energy (4) and for the force con-

- stant k.

So far we have considered the molecule to lie along the z axis. In
fact, the axis of the molecule can be oriented along any direction in
space. Generally, the molecule will be rotating, but the ground rotational
state is the one for which all orientations are equally likely. This is analo-
gous to the L = 0 or s state for electrons and is denoted as the J = 0 rota-

tional state. Excited rotational states have energies of

Erot = ‘;12_] <J+1)»

‘where I = uRE is called the moment of inertia. This is analogous to the

classical rotational energy

class_l_Z
Erst —2]L.

where L is the rotational angular momentum. Experimentally, the bond
distance of molecules is often obtained by measuring the rotational ener-

gies and thereby deriving | and hence R,.
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For Hp and HJ, the vibrational energies are

hvy = 4401 cm™ = 0.5468eV = 12.58 keal for Hp

hVo

2322 cm™!

0.288eV = 6.684 kcal for Hg

and the rotational energies are

Ey

BJ(J + 1) ,
where

B = 80.B5cm™ for Ha

B = 30.21 cm™ for Hf .
In these systems, the total bond energies are

Dy = 36117cm™ =

4.478eV = 103.3 kcal for Hp

Dy = 21382 cm™ = 2.651 eV = 61.1kcal for HF
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Appendix 1-A. Hermitian Operators

In §1.1, we found that the basic postulate of quantum mechanics

implies that the wavefunction ¥ is norfnalized,

<Yly> = 1, (1)

and that the time derivative of the wavefunction is determined by the

- relation

inl = gy (2)

Here we will show that these conditions imply that H is a Hermitian

operator

<Yl H > = <(HY) %> = <yl H %

for all (allowed) functions 4; and %, This roperty results from the
requirement that the total integrated probability (1) not change with

time for any superposition of (allowed) functions.
1-A.1 Notation

First we must establish some notation. For any operator B and any

functions ¥; and ¥y, we define the jk matrix element of B as
By = <%|Blta> = [ dry(Bywd) (3)
The Hermitian conjugate of B is defined as the operator B!
BNk = <yl Blwe> = [ arBy) o = <(By) (e (4)
for all ¥; and ¥, (of the Hilbert space). From (3) we see that
<(Byp o> = <h|Byp>* = By . (5)
and hence (4) can be wrilten

(B = B4y - (8)
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If Bis equa.l to its Hermtian conjugate,

<Y B %> = <%i|Blta> | (7)
we say that B is Hermitian and write

-~

Bf

B . (8)
1-A2 Hermitivity of A

From (1) the total probability of finding the particle somewhere,
<Y lv> =1 .

is independent of time. Thus, taking the derivative with respect to time,

we have

< <
Y|, >
= <
2 ot 17> 7 <¢

Substituting the Schrodinger equation (2) here leads to

>
L7
at; fd‘r

-Ad « 0¥
aa 7TV G

0 = ()™ [ ar[~(HY)* ¥ + ¥*(HY)]
or
0 = {=<y|H|¥y>* + <Y|H|Y>} . (9a)
which implies that the quantity
E = <y|H[y>
(referred to as the energy) is real.

Consider now the superposition

v = Cpy + G

(where C; and Cy are numbers, possib_ly complex) of two states ¥; and ¥

that are orthogonal

<Yl = 0
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at some time to. Then, since <y|y>, <¥;|¥;>, and <1//kl1,(zk> are all unity and

independent of time, it rhust be that

Coe Ci<tc| 95>+ C% Cu<¥y| 9> (10a)

= <Y[Y> - CH q i<¥; %> — C*i <t | %>
is also independent of time. Similarly, considering
’l//' = 1C]'I/IJ + Ck’tl/k

(where i = v=1), we find that for <¢'|¥'> to be independent of time

requires that
i C*kcj<¢kl¢j> -1 C‘jck<¢j | %> (10b)

also be independent of time. Combining (10a) and (10b) leads to the con-
dition that

<Yl = 0

is independent of time. This leads to

- 3% oYy 2
0= Ppy2 v gy s
= [ - <y [H 9> + <yl y>]
and hence

Ul B> = <g| B 19> (9b)

(which also applies to j = k). This relation (9b) must apply to all possible
pairs of functions ¥; and ¥, and hence the Hamiltonian operator, H, must
be a Hermitian operator. From this derivation we see that the Hermitian
property of H results from the assumption that the total integrated pro-
babilily of any superposition of functions is independent of time (con-

servation of normalization).
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1-A3 The Momentum Operator

An example is appropriate here. Consider a one-dimensional system

with coordinates in the range

o
A
e
A
o

Is the operator

L. b4
P= T &

Hermitian? To find out we consider

Wl = [ax@u) o= - L e Wy,
Integrating by parts, this becomes
819 = — Dty v(aiida) - 9O (0)) + B f ax gy
or
B> = ~Blyr@mda) - 9HOmO] + <wlBlue . (11)

Thus, the operator p is Hermitian if and only if the boundary conditions

are such that

¥(a)¥u(a) = ¥*(0)¥(0) (12)

for all allowed functions ¥; and ¥ Thus, it is nonsense to say that

p = ?— a‘-i)-(—is an Hermitian operator; rather, one must say that the opera-

tor is Hermitian given such and such boundary conditions. Some accept-

able boundary conditions for the above case are

(1) Y¥(a) = 0, ¥(0) = O (this is the case of a particle in a box),
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(ii) ¥(a) =/ 4(0) (this corresponds to periodic boundary conditions
where the point x = a is physically equivalent to the point x = 0; a
common example is for angular coordinates ¢ where a = 27 is

~ identically the same point as x = 0), and

(iii) for systems of infinite range - = < x < +, then for ¢ to be normal-

ized, <p!¢> = 1, it must be that ¢ » 0 as x » + =, leading hence to

@;*(a)er(a) » = as a - fo .

If the boundary conditions are such that p is Hermitian, then the

kinetic energy operator

is necessarily Hermitian. This follows by applying the Hermitian proper-

ties of p sequentially,

<(§x§x¢j)‘¢k> = <(§x¢j)'§x['¢’k> = <"/’j|§x§x’¢’k> .
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Appendix 1-B. The Kinetic Energy

Summary. We will show in this section that the matrix element

tab <¢a| _%Vz [‘Pb> : (1)

can be written as

tab %<V§pa "Vep> (2)

where the dot product is indicated. Thus the kinetic energy of an orbital

becomes
teaa = %<|V¢a52> (3&)
in atomic units or
y v
taa = _z_rn—<| Vo |2> (3b)

in other units.

PN NG 1N 0 NG N N 1N 1 1N N 1N P 1N 1 N 1D 1N P 1N P 18 1N 1N 1 1 1 1 NG 1 1 P 1 1 1) N 1 1 1 1 1 N NG N P £ 1 1 P ) N P N

Consider first the integral

+= 62
=ff-f"dxdydz;o*a a;b .

ANA
vvv

|22
506.’ 6X2 14"
Integrating by parts, this becomes
= Bp*, 0
Qfx = +=) ~Qx=—=) ~ [ [ [ axdydz 252 ©

where

+oo ’ a

(this is referred to as Green’s theorem). However, for ¢, and ¢ to satisfy

the basic postulates of QM, we must have
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<palga> = 1
<gplgp> = 1,
vand hence-
$a = 0 as X = tow
Thus

Qx=+%) = 0

Q(X = —oo) =0
and we obtain
< 2 > < >
0 O¢a | Opp
g = - < = >

Proceeding similarly for the other terms of (1), we obtain
tn = %[ A7 [Vo s Vgy] = % <Vp, - Vo> (6)

and letting ¢, = ¢ leads to (3).
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Appendix 1-C. The Nodal Theorem

In this section we consider the eigenfunctions ¢, for a general one-

dimensional system,

Hen = Epgn
where
- -1 d
H = TR + V(x)

is real (so that the eigenfunctions are real) and

M=m/% .

~ Letting n denote the number of nodes (internal to the boundaries),

we will show that

Eo < En (1)

En < E1-1.+1 . (2)

That is, the ground state of the system is nodeless and the state with n
nodes has a lower energy than the state with n+1 nodes. For sufficiently

singular potentials, the inequalities in (1) and (2) become equalities.
1-C.1. The Inequalities

Consider first the functions g, and ¢,, which are the eigenstates of A,

Hpg = (T +V)po = Eopo
(3)

Hypy = (T+V)g, = Epy
with zero and one node, respectively', as in Figure 20. Here a and b ,afe
the boundaries of the system (they may be at + =) and zeroes at the

boundaries are not counted.
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Figure 1-20. ¢q aﬁd ¢, for the proof of the Nodal Theorem.
First we will show that |
| E; = Eg .
Letting c be the location of the node in ¢;, we consider the region
a<x<c (4)

so that both ¢, and ¢, are positive. Then from (3) we have

Eg = V+ —T
c %0 ¥o
(5)
.l o~
E, =V+ =T
1 o1 @1
for all points in region (4). Thus the energy difference is given by
E,—FBy = —Tg¢,— =—Tg, = Te1) — T : 6
1= B = =Ter = 2=Tgo e [#0(T 1) — #1(Teo)] (6)

The integral over all space of the term in brackets is zero since T is Her-
mitian,*
b

S dxloo(T ¢1) — ¢1(T ¢0)] = <@oiTler> — <T golp> = 0 ;

a

however, the integrand is generally not zero.

* For a one-dimensional system, the orbitals can always be taken as real.
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To estimate the sign of (6), we multiply by ¢,¢,, then integrate from a

to ¢, and then divide appropriately to obtain

B

(Ex —Eo) = X‘ (7)
where
[o3 . C A .
B= fdxgeTo— fdxe Teo (8)
a a
[+4 ) :
A= f[dxeg . (9)
a

Integrating by parts, the first term of (8) becomes

c . ¢ a2
A #1
dx g T = - =—{ dx [——4
[ Yol ¢ oM .[ %o axz

_  ° dpo | [ 8¢, 1 dg; | |°
tard |5 B ) [T A | o .
1 8%p0 S op, | |°
) EGE |t o [ ax | P17 %0 Bk (10)
Combining (7)-(10) together, we obtain
[ (s 8 c
_ i o | _| o¢¥s
(EI—EO) - oA [;ﬂl A% ] [ % %o }a .
Since
@1(c) = 0
@olc) > O
8¢, .
{ 0X Jg=c <0
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[+
A=fdxgo1*¢c>0,
3

we obtain

SR o= - 991

that is,
E,-Eg > 0. (12)

Thus the nodeless wavefunction has a lower energy than the wavefunction
with one node. The same proof shows that ¢y has a lower energy than any
wavefunction with more than one node. Hence, the ground siate of the

systemn has no nodal points (inside the boundaries).

Similarly, the above proof can be applied to the comparison of E;, and
En.+;, that is, the energies for wavefunctions having n and n+1 nodes,

respectively. The result is that

Epey > Ep . (13)
and hence the eigenstates of a system have energies increasing in the
same sequence as the number of nodes.
1-C.2. Singular Potentials

To obtain (12) we assumed in (11) that

polc) # O (14a)
and that
8y,
% e # 0 . (14b)

Usually these conditions (14) are satisfied; however, there can be cases

where the potential is such that one of the quantities in (14) is zero. In
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this case we have
E,-Ey =0,
and hence the general condition (12) should be
E, = Eg | (15a)
and (13) should be
Ene1 = Ep . (15b)

For example, consider the case wherein the potential V(x) is so
strongly repulsive at some point ¢ that all solutions of finite energy must
have a node at c¢. In this case, the functions ¢ and ¢, in Figure 20 will

have the shapes in Figure 21.

b, <
b
a ¢ b a c
¢,
@) ®)

Figure 1-21. The first two solutions for a potential sufficiently singular

at point c.

From (11) this leads to
El - EQ = 0 s
so that Eg and E, are degenerate. In this case, the functions ¢q and ¢, will

have the same shape in each region. At x = ¢, one of them changes sign

but since both must be zero there, they have the same energy.

If the potential is not singular at ¢, the function gy can generally lead
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to a lower energy by being positive near ¢ (thereby obtaining a smaller
kinetic energy).

The presence of cases such as in F‘igure 9a complicated our notation
for the states (in referring to the number of nodes). To keep thihgs sim-
ple, n refers to the number of points at which the wavefunction changes
sign.

Singularities in the potential would also lead to equalities in the ener-

gies for some excited states,

1-C.3. A Singular Example

As discussed above, the equal sign in (1) would occur when the poten-
tial V(x) is sufficiently singular that the best non-negative wavefunction ¢

has a node at some point. For example, if

- 1
V) = T

the potential energy is

<o) V00 | ¢(x)> = fdx,ijf‘—{;'——+ [ ax 2l
Expanding

@(X) = ¢(xo) + (X —%g) ¢'(Xg) + " -

we see that the dominant term in the integral

}O'dx _?L(E)i__
|x — Xg|
is
0
o(x0)? [ ET";—(OT = ¢(x0)?In0
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and hence the energy diverges if ¢(xq) # 0.

Thus, for ¢ to yield an E < = (and hence to describe the ground state)

it must be that
p(x) » 0 as X = Xg .
In this case,
Eo = E

[assuming no other singularities in V(x)].
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Appendix 1-D. The Ground State of Hydrogen Atom

Summary

The ground state of the hydrogen;like atomn (with nuclear charge 7)

has the wavefunction

YrBg) = Nee 27% (19)
where
ZS
ND - ﬂ_ag (28)
and
h
&g = mez (16)

is defined as the Bohr. The energy of this wavefunction is

2 2
E=-%7| =—}é§_§-—. (18)

ag

where
R- 2
R = Z

is the average size of the atom, where ag is denoted as the Bohr radius.
1-D.1. Solution of the Schrodinger Eqﬁation
We will solve for the ground state of the hydrogen atom, that is, the
-lowest solution of

LB e I

sV - L yrse) = Burde) (1)

Since the potential term is independent of angle, the wavefunction has

the form (see §1.1.1)

Yrde) = {r)Z(B.e) | (2)
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where the angular function Z(%.¢) is a constant for the ground state, *
Z(8,9) = 1/Vam . (3)
Thus, our chore is to solve
- B cerr) - 22 1(r) = Ei(r) . (4)
First we must express V?*f(r) in terms of spherical coordinates,

Z = rcos?

X = rsindcosy
(5)

rsin® sin ¢

«
]

rP = Xf+y3+2% .
Since

ar - _a_\/?+y§+; = Z_
92 |y y oz r

(where the subscript x,y indicates that x and y are fixed), we see that

fr af Z
= = —f’("f) .
xy [az

ar| ~ r

[s
{—a?f(r) .

Thus, letting

d*f
f'l -
(r) = 7=

(8)
df

tf - =
£{r) dr '

*The normalization condition is

2n m
[ dp [ sin® d8[Z(8.9)]F = 1,
o] [+]

leading to (3).
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we obtain

SRSt

Q@
Q
NN| »
L ]
et N
Lo
-
1
Q
Sl
: '-slN
h
PannY
)
>,
i

=(r) + Z:—[%—f"(r) - ()

{i—— j—:] f'(r) + }Z-;f"(r) .

Combinding w1th f(r) and y2 ——f(r) leads then to

ViHr) = f'(r) + -f-f'(r) . (7)

Substituting (7) into (4) leads to

e la 2 ar] ze? _

2m |dr?

as the Schrodinger equation. Since the potential in (1) goes to zero as r

- =, only the states with E < 0 are bound, and hence we take
"E<0O. (9)

Consider now a sufficiently large r that

2
Ze" | « |E|
i
(10)
‘and
2 | at d? |
] ——’drzl :
In this case, (8) reduces to
2t
o= K (1)
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where
¢ o= - ZEE >0 (12)
The solution of (11) is
flr) = e . (13)

Thus all bound state solutions of (8) must necessarily go to zero expon.en-'
tially. * |
Consider now the substitution of the exponential function (13) into

the Schrodinger equation (8),

d* , 2 df _ _ 2mZe? 1
2 s e - T L (14)

From (11) the first term of each side (the long-range terms) cancel at all

r, leaving

2 df _ _ 2 _ _ 2mZe® 1
r dr r tr) = B r Hr) -

Thus the exponential function (13) is an eigenfunction of the Schrodinger

equation if

_ mZe?

Since ¢ has the units of inverse length [e.g., see (12)], it is convenient to
consider the length quantity
ag = B/ me® ’ - (18)

(referred to as the Bohr radius or simply the Bohr) as the fundamental

* Note that in the limit of very large r, the function
rte¢r

would also satisfy (8).
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atomic length leading to -

¢ =2/4a . (]_'?)

From (12) the value of ¢ is related also to the energy,

N - 2
E= 2m
Thus,
R EAY
E = Zm‘ af
(18)
= - 2 rez
%z 2
Summarizing, we find that the wavefunction
~Zr
Yo(r.8.9) = Hr) = Noe 0, (19)

is an eigenfunction of the Schrodinger equation with an energy of

Eq = — %77 [SH \ (18}

ag = BB/ me?® . (16)

where

Since the wavefunction (19) is nodeless, we know from the nodal theorem

that this eigenfunction of A is the ground stafe of the hydrogen atom.

For the wavefunction (19), the average value of %—is

(20)

< 2| > 2 2,2
< Ze Ze Z~e
4l ide = (21)
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and the total energy can be written as

T zZe? 7%e?
E=4V=-BE_= - . 22
% % R % . (22)
In order to normalize the wavefunction (19), note that
o o 2w £
<Yly> = fridr [sinvds [ dg[f(r)]? = 4 [ rldri(r)?
0 o] [¢] z
where the angular integral is
™ 2n
fdQ=fsin't9dﬂfd;o=41r.
0 0
Since
N§

Ng }pzdpe_l’ = —D
(2¢)° % &)°

frzdr f(r)? = N§ [ rPdre ™" =
° °

we see that

Ng '\/—:— N\ / oy (23)
1-D.2. Analysis of the Wavefunction

A plot of the orbital along the z axis is given in Figure 22. Note that
the slope in the wavefunction is discontinuous at z = 0. This singular
behavior is referred to as a cusp and results from the singular behavior

in the potential energy at this point.



> Z
Figure 1-22. The ground state wavefunction, ¥, for the H atom (plotted

along the z axis). |

The Schrodinger equation (3) says that
Ef(r)

is equal to
W Ze?
B V3(r) - f(r)

for every point r. But, asr » 0, the term

Ze® (r)

- £

r

goes to — «. Thus, since Ef(r) is finite, the Schrodinger equation requires

that

_E e
sz f(r)

goes to += as r » 0. The cusp in the wavefunction leads to a V?*i(r) that
goes to += as r » 0 and exactly cancels the negative singularity in the

potential term.
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Appendix 1-E. Rydberg Atomic Units

Another set of atomic units used occasionally employs as the unit of

energy the ionization potential of the hydrogen atom,

_ met |
Be = o (1)

This quantity is called a Rydberg and is related to the hartree by
1 Rydberg = % hartree.

With this choice for the unit of energy (me*/ 2 = 1), we cannot use the
convemnient sets of units in §1.2-23. If the unit of length is still taken as

the Bohr (82/ me? = 1), then Rydberg units lead to

me? = 2K = 2me? ,

and hence we must choose

le| = V2
and

¥ = 2m
If we takem = 1, then

h= V2.

These units are sometimes used by scattering_theorists since the kinetic
energy of a plane wave, (f/ 2m)k? becomes simply k®. Also, some work-
ers reporting band calculations on solids use Rydberg units. The séries of
books by Slater also uses these units. However, the regular atomic units
(or hartree atomic units), as described in §1.2.3, are more convenient and

more common, and we will always use them.
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Appendix 1-F. Units and Conversion Factors
1-F.1. SI Units

In an effort to bring some order to the proliferation of units that con-
tinues to occur in the sciences, and international group adopted (in 1960)
what is referred to (in English) as the International System of Units, or

more commonly as Sl units.

In this system there are éeven fundamental units:

Unit Abbreviation  Physical Quantity

meter m length
kilogram kg mass
second s (or sec) time
ampere* A electric current
kelvin* K thermodynamic temperature
mole mol amount of substance
| candela cd luminous intensity

* Note that these units are not capitalized even though they are derived

from the names of people.

From these fundamental units can be derived a number of combined

units that prove quite useful. Thus, from Newton's Law, F = ma, we know
that force has units of EasEsT:nl:ng—m, and it is convenient to define the

unit of force (newton*) as
1 newton = 1 kg m sec™

Similarly, a constant force F exerted over a distance ! does an amount of

work W, so that the unit of energy (joule) is
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1 joule = 1 newton meter = 1 kg m?®sec™2

Some common derived units in SI are

. . Definition in Terms of Physical
Unit Abbreviation Fundamental Units Quantity
liter l 1078 m® volume
newton N m kg sec™® force
joule J Nm = m? kg sec™® energy
watt w J sec™! = m® kg sec™® power
pascal Pa Nm™? =m™! kg sec™® pressure
coulomb C A sec electric
. charge
Wal= electric
volt v m?® kg sec3 A™? potential
VAl= electric
ohm Q m? kg sec3A7? resistance
hertz Hz sec™! frequency

The acceptable multiples or fractions to be used for the basic SI units are

designated by the following prefixes:
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Fraction Prefix Symbol

10718 atto a
10°18 , femfo f
10712 pico P
1078 nano n
107 micro I

| 1073 milli m
1072 centi c
107! deci d

10 deka da
102 hecto h

108 kilo k

108 mega M

10° giga G
1012 tera T

Although the above fundamental units are convenient for a number of

quantities, they are quite inconvenient for others. Examples include

Definition in Terms

Physical Quantity ~ Abbreviation of ST Units
Charge on an Electron e 1.602189 x 10719 C
Atmospheric Pressure atm 101.325 Pa

(at sea level)
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Other units are not necessarily superior to the SI quantities, but
their use is so widespread that scientists must be facile with their use.

Examples include:

Relation to

Unit Abbreviation Definition Fundamental Units

Kilocalorie kcal original definition was: 1 kcal = 4.184 kJ
energy to heat 1 kg of (defined to be exact)
Hz0 by a temperature
of 1°K (at 15°C)

Angstrom A -- 12 =10®m=10%cm

Electron Volt ev energy change upon 1 eV = 96.483 kJ mol™!
moving a charge of 1
electron through an
electric potential
of 1 volt

1-F.2. Units for Coulombs Law
Conversion between units can sometimes get confusing for coulomb
interactions. Coulombs law states that the force between two charges @,

and @,, separated by a distance R is

Total Force = %g—g——
and hence the enegy of interaction is
R
_ _ _ Qe
E= [Fdr = =5—.

In cgs units, we define the electrostatic unit of charge (esu) as that
charge which leads to a force of 1 dyne when the charges are separated

by 1 cm. Thus

2
Force (dynes) = [Qlesu)®

[R{cm)]?
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Energy (ergs) = ri?—%%]z— . ' (1)

In SI units, the unit of charge (the Coulomb) is defined in terms of a
current (1 ampere = 1 Coulomb/sec), and the units of current are
related to force and distance through a different force law (magnetic

| induction). The relationship between Coulombs and esu turns out to be

1 esu

1 Coulomb = ——25% _
owem® = 12 998 10°)

where the 2.998 comes from the speed of light (2.998 108 m/sec). Since

Force (newtons) = 107° force (dynes)

R (meters) = 10* R (cm) ,

the Coulomb law becomes

Force (newtons) = [8.988 10°] (@ E;o?i:?]lf)]z . (2)
and
Energy (joules) = [B.988 10°] [Q(C}?Fiﬁb)]z .

In SI units, the constant in this expression is generally written as

8.988 x 10° = ——
4rreg

where
g = B.B54 10712 CAN"Im™® (3)
is called the permittivity of a vacuum. This leads to

@,(C)@(C)

Energy (N) = Tnes RUD) (@)
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for the coulomb energy.

In this course the @, and @, are always some multiple of the funda-

mental charge on a proton (or electron),

le = 1.80210°18 C

= 4,803 10 Wesu .
Thus we will write
@ = q.e and Q2 = gse . (5)

where g, and g, have no units. In addition, we will often write R in terms

of Bohr radii, e.g.,
K =rag, (6)
where r has no units. In this case the coulomb energy becomes

9.9 2
e (7)

Energy = -
o

where no 4meg factor is included. In (7) the unit of energy is

e?
1t hg = 1hartree = —
Qg

(8)

= R7.2116 eV = 2625.5ki/ mol = 627.51 kcal/ mol .
The fast way to calculate atomic level coulomb energies in various units is
to first express all distances and charges in atomic units, as in (5) and
(8), calculate the energy using (7), and then to convert from atomic units

to SI units using (8).

Example: Calculate the interaction of two protons at a distance of R = 5

=]

A

Answer:
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R

‘ _ _5b _
, 54 = Sasg G0 = 9:45ao

|
ao) 9.45

E(h) = R( 0.1058 kg

= 2.88eV = 27BkiI/mole = 66.4 kecal .

Useful conversion factors here are
e® = 14.3998 eV A = 332.059 (kcal/mol) A
1-F.3. Units for Mass

In atomic units, the mass of the elecfron is unity; however, this is not
to be confused with the atomic mass unit (amu) which is the standard for
relating the masses of atoms. The modern convention is to define the
dominant isotope of C (i.e.,’?C) as having a mass of 12.0000. In these
units, the mass of the hydrogen atom is

1.00783 amu,
the mass of a proton is

» 1.00728 amu,
and the mass of an electron is

-1
1822.89

Thus, in (hartree) atomic units, the mass of the proton is

alnu.

1.00728 x 1822.89 = 1836.18
The conversion to SI units is

1 amu = 1.660566 x 107%7 kg.

1-F.4. Energy Quantities for Photons

The wavelength (A) and frequency (v) of light are related by the speed
of light (c) -
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AV = ¢ .

Thus, since ¢ = 2.99792458 x 10!° cm/sec, the frequency for yellow light (A

= 600 nm) is

10

(1 Hz = 1 cycle per sec), and the wavelength for KZLA (v = 94 MHz) is

_ 3x10%0

= Sax 10° =319 cm = 319 m .

In the quantum description of light, the energy of a photon is given

by
E = hv

(where h = 2mh is the original Planck’s constant); thus the energy of a

photon of light can be expressed as

E = hv = — = hev ,

where 7 = %—is called the wavenumber (and denoted as em™). Substitu-

tion for the known values of h and ¢ leads to

E(ev) = 1239.85

= T -1
\(nm) 8065.48 7 (cm™!)

107

V(em™) = Nom)

Thus, when an electron decreases its energy by 1 eV (dropping into a -
lower energy state), it may emit this energy as a single photon with
wavelength A = 1240 nm = 1.24 microns or wavenumber ¥ = 8065 cm™.

1-F.5. Other Energy Relations

Chemists often use the energy quantity kilocalories per mole which
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we will abbreviate as kcal,
1 eV = 23.06036(14) kcal.

Recently, emphasis has been placed on SI units in which the kilojoule per

mole (denoted as kipm) is the energy unit,

1 kcal = 4.18400 kipm.

The atomic unit of energy, the hartree, is kind of large for convenient
use and we will often use the millihartree, denoted as mh. Relations

between these units are

1 eV = 36.7490 mn = 23.0604 kcal = 96.4847 kJjpm = 8065.48 cm™!
1 mh = 0.27212 eV = 0.627511 kcal = 2.62550 kJpm = 219.475 cm™L.

The average thermal energy of an oscillator at room temperature is

kT = AjTeV =1 mh = 0.6 kcal = 200 em™ = 2.4 kJpm.

The strength of the H bond is
2.5 eV = 92 mn = 58 keal = 241 kJpm.
The vibrational energy #w, of Hy is

3000 ecm™ = 14 mh = 8.6 kcal = 0.37 eV = 36 kipm.

1-F.6 Examples

The fundamental constants are experimentally determined and
hence the best values for them change with time. For aid in calculating

these constants in the future, we summarize the procedure.

ikcal

1 (eV/atom) x 1.6021892 x 1072 (kJ/eV) x

x 10 (atoms/mol) = 23.06036 kcal mol!.
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Therefore, 1 eV/atom = 23.06036 kcal mol™!. For force constants we use

Kk = MoR = 1ass_ _ Energy
(Time)? (Length)?

h _ 27.21161 *1.6021892 * 10™® erg
ad (0.52917708 * 1078 cm)?

lau =

1.556919 * 109 dyne/cm

15.56919 mdyne/ A .

1-F.7. Conversion Factors

Included herein are the fundamental constants as of 1973. The refer-
encé is E. R. Cohen and B. N. Taylor, J. Phys. Chem. Ref. Data, 2, 717
(1973), and some tables from this reference are included on the following
pages.

Commonly used constants are:*

1.  1bohr = 05291771 (4) &

2. 1 hartree = 27.21161 (7) eV
1 hartree = 627.5096 (4) kcal/mol = 219474.7 cmm™!

3. 1 eV = 23.06036 (14) kcal/mol = 96.483 kJ/mol
1 eV = 8065.48 (2) cm™! |
| eV = 1239.852(3)

A(nm)

4. 1 kcal = 4.18400 kJ = 349.755 cm™!

* A number in parentheses indicates the standard deviaticn in the error for the
last quoted digit.



10.

11.

1R.

13.

- 86 -

Atomic Masses: 1 amu = 1822.887 (1) m.

This is used to convert atomic masses (mass *C = 12.000) to har-

tree atomic units

. Force Constant: 1 au = 15.56819 rndyne/ﬁ

Gas Constant: R = 1.98719 (7) cal mol™! K™!

Gas Constant: R = 82.0568 cc atm mol™! K}

Avogadro’s Constant = 6.022045 (31)* 10*® molecules/mol

Fine Structure Constant: 1/a =he/e® = 137.03604 (11)

Dipole Moment: 1 au = 2.541765 (8) Debye

Dipole Moment: 1 au =2.541765 (8) * (10718 esu*cm)

Quadrupole Moment: 1 au = 1.345044 * 1078 esu cm?

Quadrupole Moment: 1 au = 1.345044 Buckingham

Electric Field Gradient: 1 au = 3.241391 * 10'° esu ecm ™3

2
Coulomb Energies: %—(eV) =

14.3998 €*
RA) 'R

(keal) = 332,059

7= RE)
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Table 1-F.I. Current Values for Selected Fundamental Constants. 2

' Units
Quantity Symbol Value g‘;ﬁg -
(ppm) SI cgs ?
lementary char, 1. 6021892(46) 2.9 107*¢c 10°% emu
Elementary charge € 4.803242(14) 2.9 107%° esu
Planck constant h 6. 626176(36 5.4 107 J.g 107" erg-s
E = h/2x 1 0545887(511) 5.4 107% 3.5 10" erg- s
Speed of light in vacuum c 299792458(1. 2) 0. 004 10°mes! 10%m-s~*
Fine-structure constant a 7. 2973506(60) 0.82 107? 107°
[1,c2/4n] (e2/Bc) ’ ot 137. 03604(11) 0.82
Electr st mass 9. 109534(47) 5.1 107% kg 1072
ectron rest ma Te 5. 4858026(21) 0.38 10~ u 107 o
t st mass 1. 6726485(86 5.1 10727 107
Proton restm “p 1 0072 T64900t1) ot o ® u 8
Ratio of proton to
Railo of protol m /m, 1836, 15152(70) 0. 38
Atomic mass unit; 27 ' -24
10 kg molos Ny a 1. 6605655(86) 5.1 107" kg 107* ¢
Ratio amu to m_ u/m, = 1822. 837(1)m,
Bohr radius, ay 5. 2917706(44) 0.82  10™"m 10 em
[noc?/47] (li’/mee ) = @/4¥Ry
Rydberg constant, R 1. 0973731 77(83) 0.075 10°m™* 10° em?
[yocz/‘lt]’(mee‘/tith’c) ©
Avogadro constant S 6, 022045(31) - 5.1 10** mol™* 10*® mol™*
Faraday constant, N, e F 9. 648456(27) 2.8 10* C+mol™ 10° emu-mel:l
ye » VA 2. 8925342(82) 2.8 10“ esu - mol™"
Bohr magneton, [c] (¢i/2mc) By 9. 274078(36) 3.9 107 g. 7! 107 erg-G™!
Nuclear magneton 5. 050824(20) 3.9 107" 5.7t 10 erg-G™*
[e] (eli/2mpc) ’ EN , .
Molar volume of \'4 22, 41383(70) 31 107°m® mol™  10°cm®-mol™
ideal gas at s. t.p. m
Molar gas constant, p,V,,/T, R 8. 31441(26) 31 Jemol™'-K™* 10”erg ‘mol™ -K™!
(T, = 273.15 K; p, = 101325 Pa 8. 20568(26) 31 107m’eatmemol K™ g s e et
= 1 atm) = 1.98719(7) keal/mol K '
Boltzmann constant, R/N, k . 1,380662(44) 32 107 5. x™* 107 erg-K™*

2 Note that the numbers in parentheses are the one standard-deviation uncertainties in the last digits of the quoted value
computed on the basis of internal consistency, that the unified atomic mass scale 2C = 12 has been used throughout, that
u = atomic mass unit, C = coulomb, F = farad, G = gauss, H = henry, Hz = hertz = cycles/s, J = joule, K = kelvin
(degree Kelvin), Pa = pascal = N-m™, T = tesla (108 G), V = volt, Wb = weber = T*m?, and W = watt. In cases where
formulas for constants are given (e.g., Ry), the relations are written as the product of two factors. The second factor,
in parentheses, is the expression to be used when all quantities are expressed in cgs units, with the electron
charge in electrostatic units, . .

b 1n order to ayvoid separate columns for "electromagnetic" and "electrostatic" units, both are given under the sin%e

heading 'cgs Units. " When using these uni i d col: should be understood
bo v ég%ace dbye, ore., res pggtivel;.mts’ the elementary charge e in the second column
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Chapter 2. The Chemical Bond: Hf and H;
Summary:

In this chapter we consider the two states of Hf

e = Xttt X
fu = Xi —Xr

(the LCAO wavefunctions) arising from bringing a proton up to the ground

state of hydrogen, and we consider the two states of Hp

= XiXr T XEX
$, Xt Xr = XeXi

]

(the VB wavefunctions) arising from bringing together two hydrogen
atoms each in the ground state. As expected from the nodal theorem,
the g state (symmetric) is the ground state for both systems. Indeed, in
each case we find that the g state leads to bonding, while the u state
leads to a repulsive potential curve. The g state of Hy leads to an
increase of the electron density in the bond region; however {contrary to
popular belief), this leads to an increase in the electrostatic interactions,
thus opposing bond formation. A bond is formed because of a very large
decrease in the kinetic energy due to the molecular orbital having a
significantly decreased gradient in the bond region. The .bonding of the g
state of Hp arises from the same term (modified by an additional overlap

factor due to the second electron).

The potential curves for both states of both molecules are dominated

by exchange terms of the form

X
g

for HS and



z 25T
£ 1+s?
.RST
EX = — ==
h 1-8?

for Hs, where S is the overlap of the atomic orbitals. The quantity 7 is the
quantitative manifestation of the decreaséd kinetic energy (and
increased potential energy) arising from interference of the y;, and x

orbitals. It has the form

‘r%—%—s

for large R. Thus, at large R the bonding of HZ is proportional to S, while
the bonding of H; is proportional to S% Consequently, for large R the
bond energy of H exceeds that of H;. For small R, where S ~ 1, the bond
energy of Hp is approximately twice that of Hf. The u states are far more
repulsive than the g states are attractive (due to the 1 + S and 1 + S?

terms in the denominators of £* and EX).

We alsc examine the molecular orbital (MO) wavefunction for H,

3MO(1.2) = @(1)¢g(R) .

which provides a simple description of the ground and excited states for
small R. For large distances, the ionic terms implicit in the MO wavefunc-

tion lead to an improper description.
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2.0 The Chemical Bond in Hf and H;

Many atoms will combine with other atoms to form a strongly bound
molecule. The point of this chapter will be to establish the origin of the

chemical bond for the simplest one- and two-electron systems.

We will observe the following conventions on notatidn in this and fol-
lowing chapters: Lower- case letters will be used for one- particle
wavefunctions (¢) and energies (e), Whilevupper- case letters will be used
for many- particle wavefunctions (%) and energies (E).

2.1 Origin of the Bond in HS

We first consider the smallest possible molecule, HZ, consisting of one
electron plus two protons separated by a distance R. This system is

sketched in Figure 1, where the two protons are denoted as a and b.

3
A
]
' '
rl// |
'
Pd 'rb
s !
s )

V4
. €S- mg-—-4,

Figure 2-1. Coordinates for H?.

21.1  LCAO Description

Consider first the case with R = =. With the two protons infinitely far
apart, the ground state is obtained by placing the electron in the 1s orbi-
tal of one of the other of the two protons. This leads to the two states,

H H* (1a)
and '

H* H (1b)

which are described by the wavefunctions, *



¢ = x = Ne °® (Ra)
and

$=x = Ne™, (2b)

respectively, where x; and x, denote hydrogen 1s orbitals centered on the

left and right protons.

For finite R, the exact wavefunctions no longer have the atomic form,
but useful approximate wavefunctions can be obtained by allowing the

wavefunction to be a (linear) combination of the atomic orbitals in (2),

¢ = Gx +Crxr - (3)

This simple type of wavefunction is often referred to as LCAO ifor a linear
combination of atomic orbitals. We will find that the optimum LCAO

wavefunction is the symmetric combination,

¢y = (u + XT)/Dg M (4)

(where D, is a normalization factor). The other combination of the orbi-

tals (5.3) is the antisymmetric combination,

vu = (¢ —Xr)/ Dy \/4 (5)

(D, is the normalization factor).

The energies for the wavefunctions ¢, and ¢, in (4) and (5) are shown

as a function of R in Figure 2. Here we see that the g state is strongly

* N is the normalization factor.
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Figure 2-2. The energies of the LCAO wavefunctions for HY.

Q3
Hz‘
LCAO

o2

O.lr

DENSITY (AU)

2 COORDINATE (BOHR)

Figure 2-3. The densities pg and py for the LCAO wavefunctlons of Hg com-
pared with the superposition of atomic densities, p



-8-

bonding (that: is, the energy drops as the nuclei are brought together),
while the u state is strongly antibonding (the energy increases as the
nuclei are brought together). The objective of this section will be to
-understand the origin of the boﬁdmg and antibonding charactered exhi-

bited by the ¢, and ¢, states.
211a Electrostatic Fnergy

First we consider the electron density,
1
pg = ¢& = Sz + x)? = (xXF+xF+2xx)/ D¢ . (8)
(]

Integrating ¢Z over all space must give one electron

<p2> = 1 (7)
and similarly

<xf> =1

x> =1

(recall that these are just the 1s orbitals of H atom). Thus (6) leads to

1+1+2S8

1 =
Dy2

where
S = x> (8)

is called the overlep of the two atomic orbitals. Consequently, the nor-

malization condition in (4) is
D, = V2(1'+75) . (9)
If there were no interference terms in (6), the density would be*

% = BOF +xB (10)

* The factor of % leads to the required condition <p°1 >=1.
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but because of the interference terms the density neor the bond mid-
point is increased, as shown in Figure 3. This result has given-rise to the
prevalent idea that the chemical bond arises from the increase in the
electron charge density in the bond region. The idea is that an electron
in between the nuclei attracts both nuclei, holding them together to form

the chemical bond,
p" e” p* (11)
This reasoning is false as will now be demonstrated. The total potential

energy is given by

2 2 2
V(r)=-—:T-f_—b—+ Eé-, (12)
as sketched in Figure 4.
V(z)
A
2 a b
Vir) = = % -— »
R

Figure 2-4. The nuclear attraction potential V(i-) for H7.

as sketched in Figure 4. Here we see that the best place for the electron
(i.e., lowest energy) is at a nucleus (r;, =0 or 7, = 0), nof at the bond mid-
point. From Figure 3 we observe that the increase in charge at thé bond
midpoint is at the expense of charge near the nucleus. Thus, in forming a
bond, ihe charge is transferred from ‘a low energy region (near the
nucleus) to a high energy region (the bond midpoint), an effect that
“should operate against bond formation. Indeed, this is the case, as

shown in Figure 5, where
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0.20

OO0

RELATIVE POTENTIAL
ENERGY (HARTREE)
1
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Figure 2-5. The relative potential energies, Vg, and V,, for the LCAO
wavefunctions of Hf. The absolute values are obtained by noting that
Vg=Vyg=-10atR ==,

06

o
N

AMPLITUDE (A.U)
o

]
o
N

-04

_O.e | 1 1 1 .l ] 1
-40 =20 e} 20 40

2 COORDINATE (BOHR)

Figure 2-6. Comparison of the ¢, and gy LCAO’s of Hs with the hydrogen
atom orbital, ¢;,. All wavefunctions have been normalized.
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Vg = <p&V(r)>

is the total potential energy for the g, wavefunction.

Our conclusion then is that étransfer of electron charge into the bond
region leads fo repulsive electrostatic interactions. The fact that the
bonding state leads to such a transfer indicates that the origin of the
bond lies in the other contribution to the energy, the kinetic energy, as
will be discussed next.

2.1.1b Kinetic Energy

A qualitative prediction of changes in kinetic energy upon bond for-
mation is easy. The kinetic energy is the (average) square of the gradient |
of the wavefunction, T = (h?%/ 2m) <|V¥|?>. Superimposing two atomic orbi-
tals symmetrically as in g, leads to a iarge decrease in the slope in the
bond region (see Fig. 6), and hence a large decrease in the kinetic energy

(see T, of Fig. 7),
T, = (A% 2m) <(Vg,)?>

resulting in a strong bond. On the other hand, the antisymmetric combi-
nation in ¢, leads to a large increase in the slope in the bond region (see
Fig. 8) and hence the kinetic energy opposes bond formation (see T, of
Fig. 7).

The resulting total energies are given in Fig. 2, where we see that g,
is strongly bonding while ¢, is strongly antibonding.
21.2  Bonding to p Orbitals

Above we found that it is the change in the kinetic energy that dbm—
inates the energy changes in the LCAO description. ‘ Basically, if two
atomic orbitals are superimposed so that no new nodal planes are

created, as in Fig. 8a, then the kinetic energy dfops signiﬁ‘cantly’ due to
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Figure 2-7. The changes in the total kinetic and potential energies for the
g and u LCAO wavefunctions of H.

The actual values at R
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Figure 2-8. (a,b) Symmetric and antisymmetric superposition of 1s

atomic orbitals. (c,d) Symmetric and antisymmetric superposition of 2py
orbitals (oriented along the axis).
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the decrease in the gradient of the orbital in the internuclear region.
This is a general phenomenon and depends only on the fact that in the
bond region the gradients of the atomic orbitals are in opposite direc-
tions (contragradient) so that (symmetric) superposition of the orbitals

leads to a decrease in the gradients.

Conversely, superposition of orbitals so as to lead to a new nodal
plane, as in Fig. 8b, gives rise to much steeper gradients and a much

larger kinetic energy, leading to antibonding potential curves.

These results are not limited to superimposing 1s orbitals. Consider,
for example, a bond between p, orbitals on two atoms (assuming z to be
the internuclear axis), as in Figure 9. The plus combination leads to a new
nodal plane (higher gradients) and antibonding (see Fig. 8d), while the
minus combination leads to lower grandients and bonding (see Fig. 8c).
Similarly, bonding of the p, orbitals leads to Figure 10. Now the minus
combination leads to a new nodal plane and antibonding, while the plus

combination leads to bonding.
2.1.3 The Optimum Distance for Bonds

There is a natural optimum range for the effects that dominate bond-
ing:

i) If R is very large (near =), there is a large region in which the gra-
dient is decreased; however, at each point, one or the othe;' of the
two orbitals has a very small gradient, so that the decrease in the
gradient is very small (and goes to zero as R - =). The result is a

small bonding contribution for large R.

ii)y If R is very small (near 0), there is a large decrease in the gradient;
however, the region of this large decrease is only the small region

between the nuclei (which goes to zero as R » 0). [The latter effect is ;
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Plus Combination Minus Combination
(955 = Pyg + Ppr) ($5y = Pyg = Pyyp)
X

- -_>>‘

a

SR~ v O] SO
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¢ ¢
() %\T\'/gﬁ\ >z (d) M‘/:\T/*b?\_/>z

a

Figure 2-9. Bonding between p, orbitals. (a) and (b) are schematic
diagrams of the shape of the orbitals in the xz plane. (c) and (c) are plots
of the orbitals along the z axis.

Plus Combination Minus Combination

¢x~u=px!+pn ¢xg=px!+pxr

’8 ’igb 38 i-_g_,z

Figure 2-10. Bonding between p, orbitals.
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illustrated in Figure 11, where the left side is for R near optimum and

the right side is for small R.]

Thus the optimum bond is formed at an intermediate distance where the
gradients are large and opposite (contragradient) for a large region. For
the hydrogen 1s orbital, the optimum distance is about 2aq, which is just
the sum of the atomic radii. For a p orbital, the optimum decrease in the
gradient occurs when the outer lobes are separated significantly, as illus-

trated in Fig. 1l1c.
2.1.4 Symmetry Considerations

The H# molecule has a great deal of symmetry. In quantum mechan—v
ics, symmetry in the molecule generally leads to symmetry in the
wavefunction, and knowledge of these symmetries can aid us both in solv-
ing for the wavefunctions and in reasoning qualitatively about them. For
the time being we will concern ourselves with only one of the symmetries

in Hg, namely, the inversion symmetry.
2.1.4a The Hamiltonian

First we need to consider the form of the Hamiltonian for Hf. Using

the coordinate system of Figure 1, the full Hamiltonian for Hf is

B2 o Za€®  Zpe®  ZaZpe?
ZmV‘ e o = (13)

y= - w-Lbg

o~ + _ -
H(Hz) = 2M, 2M,

We will simplify (13) by assuming the nuclear masses to be infinitely
heavy (M, = Mp = =), by taking the nuclear charges as unity (as appropri-

ate for H#) and by using atomic units (h = m = e = 1). This reduces (13)
o _ ‘
Gty = —pyeo Lo 1, L B
H(HZ) = -4V oy TR (14)

We will group together ali the terms depending upon the coordinates of
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Figure 2-11. Illustration of the effect of R on the contragradience of orbi-
tals. In each case the R for the left case is near optimum, while the R for
the right case is too small. :
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one (and only one) electron as

R(1) = =%+ v() s
(referred to as the one-electron Hamiltonian), where

(16)

1

1
vil) = - -
(1) iy

is the nuclear attraction term (arising from the attractive electron-

nuclear interactions). This leads to

H(HE) = h(1) + %-—.I (17)

The exact (electronic) wavefunction of Hf is obtained by solving

A (1) = Eg(1) , (18)
where H is given by (17). Substituting (17) into (18) and rearranging, we
obtain

hy = e¢ , (19)
where

(0)

is referred to as the electronic energy. Although (18) may appear to
involve only the electronic coordinates r, the internuclear coordinate R is
involved implicitly since it determines the spacing of the attractive terms
in v, (16). In solving for the wavetunction of HZ, we choose an R and solve
(19) to obtain the electronic wavefunction ¢(r) and the electronic energ;
¢. We then choose a new R and again solve (17), obtaining a new ¢(r) and a
new e&. The result is an electronic wavefunction ¢(r) and an electronic

energy &, each of which is parametrically dependent upon R. (This pro-

cedure is referred to as the Born-Oppenheinier approximat_ion.)
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2.1.4b Inversion Symmetry

The operation of inversidn through the origin of a coordinate system

leads to the changes

x - —Z
Yy > -y (21)
2 -» -2

in the coordinates, and will be denoted as 1

Taking the origin of the coordinate systems as the bond midpoint in .

Fig. 1, the inversion of the coordinates of the electron leads to Figure 12.

2.,/ ]
‘/’ J’ I a R b
a ---ﬁ———-b ——n [~--——===-=>
r. ! <
bl r//
”~
@ !} _-Ta
elv
(b)

Figure 2-12. The effect of inverting the coordinates of the electron. -

The electron is now 7, from the right nucleus (b) and r, from the left
nucleus (a). However, since the nuclear charges are the same, the poten-

tial terms in the Hamiltonian are the same.
Upon inversion, the kinetic energy terms in A are also unchanged

aZ 62 62 62 62 62
+ + + +
32 | oy2 | 822  B(—xR & 8(-y)E & 8(-z¢

V2= =V2,

and hence the Hamiltonian is invariant upon inversion of the electronic

coordinate (through the bond midpoint).

Now comnsider that we have solved (18) to obtain eigenstates of Hy,

A¢ = Ey , (22)
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and apply I to both sides of (22). The result is
1(49) = E(y) | (23)
which we could write as
A(-D)p(-n) = Eg(-) . (24)

indicating the result of inversion. But # is invariant under1

~

H(-r) = H(r) (25)
so that (24) becomes

A(D)p(-r) = Eg(-1)
or

A(r) (1) = E(p) . (26)

Equations (22) and (28) state that ¢ and Ty are each eigenfunctions of
exactly the same Hamiltonian with exactly the same energy. There are

two possibilities here:

(i) The state is nondegenerate, in which case Iy and ¢ must be propor-

tional to each other, or

(ii) the state is degenerate, in which case Ip and ¢ may be linearly

independent* functions.
First we consider that the state is nondegenerate. In this case
qu = Ay, : (R7)
where A is some constant. But, applying T twice leads to |

X » X
y =y
zZ >z,

*i.e., not proportional.
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and thus mus;. return the original function
Po(r) = T‘P(“_!‘) = p(r) . (28)
whereas applying T to (27) leads to
Tﬂp = Xf;o
and using (27) on the r;ght side leads to
R = A% . (28)

Combining (28) and (29) leads to

1}
S

A
—

~
g

#(r)
or

leading to

That is, nondegenerate states of H must be either symmetric under
inversion (A = +1) or antisymmetric (A = -1). Wavefunctions with these
symmetries are denoted with g (for gerade or even in German) or u (for
ungerade Or uneven), as in g, or ¢,.

Consider now the case (ii) of a degenerate state with ¢ mot propor-

tional to . We can form two new functions,

g = p +lg

po = p—lp

such that each function is still an eigenfunction of # (with the same

energy) Hyg = Egg Hyy = Epy, but such that one function is gerade

-

Tog = g

while the other is ungerade
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Igy = —gy .
Thus, in this case also the eigenfunctions of # are g or ut

The same procedure can be used for higher degeneracies, and hence
the conclusion is that for any # invaerient under inversion, each eigen-
stale can be taken as either g or u. Examples are given in Figures 8, 9,

and 10.
2.1.4c The Nodal Theorem

An ungerade wavefunction for Hy necessarily must change sign at the
plane passing through the bond midpoint. Consequently, from the nodal
theorem we know that the ground siate of H wnll be a g state. *

2.1.5 The Exchange Energy

There is a direct relationship between the bonding observed in ¢4 and
the antibonding observed in ¢,, both being dominated by changes in
kinetic energy as the bond is formed. We will now obtain an explicit form
for this relationship.
2.1.5a The (lassical Energy

Consider first the wavefunction for Hf with no superimposition of

atomic orbitals,

¢ = x . ' (30)

We refer to this as the classical wavefunction because it does not have

1 If a certain state is doubly-degenerate with wavefunctions ¢, and ¢y, then start-
ing with just one function, say ., we generate both a g function and a u function,
$ga = ¥Ya + I¢a and gya = @q — [ pa. If these functions are both nonzero, then ¢p
will be a linear combination of ¢z, and ¢,,, and nothing need be done with it.
However, if ¢, were already g or u, then ¢y is needed to generate the second func-
tion.

* Since there is no singularity at the nodal point, the inequality in the nodal
theory applies, resulting in E, < Ey. However, for R = o, even the u wavefunction
is zero at the midpoint, and hence the lowest g and u states are degenerate.
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interference effects arising from superposition of atomic orbitals. The

energy of this wavefunction,

Ecl

is nonbonding, as shown in Figure 13. Using (17) we obtain

. <
et = < |H|x> = <X¢“%Ve—‘1"-l‘ x> (31)
< Fe TIp >
< 1| >
= Zatom T < X1 -7 ) (A
: < b >
where
< >
Faom = <Xt | =BV - x> = H(e¥ag) . (32)
< a >
Thus
where
z)> 2
6 = <y |-& >+ & 34
Xi ™ | R ] . ( )
is repulsive.
2.1.5b The Ezchange Energy

Now we consider the wavefunction ¢, with energy

<l+r|HIL+r>

< T +ril +r>
(35)
- JULHL+Tr>
<[L+r> -
Since
UA|L+r> = <U|B|l> +<L|H|r>

e + <I|H|r>

U|IL+r> = <AL> + <L|r> = 1+8,
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Figure 2-13. The classical energy and the exchange energies for the LCAO
wavefunctions HS.
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we obtain
. = gt + <L|H|r> _ sol 4 <l|A|r> —¢e°'S
e 1+8S : 1+8S
= gol T
g = &% ¥ 5 (36)
where
T = <l]H|r>=-5Szg
1 1
= h¢r+5_§°]—3 h“+R_
or
T = by —=Shy . (37)
Similarly,
e = <l —r|H|I -r> - KUHIL—-1r>
v <L -ril —-r> <l|l -r>
_ e —<l[H|r>
1 -3
or
su=s°‘—lzs . (38)

where 7 is again given by (37). Thus the interference resulting from
superimposing the x, and x, wavefunctions can be viewed as corrections

upon the classical energy,

g, = &% + gF
(39)
g, = &% + g%,
where the correction terms
r
Sz —
g 1+ S5

(40)



are referred to as interierence, exchange, or resonance terms. These
energies are shown in Figure 13, where we see that ¢f favors bond forma-

tion, while £ opposes bond formation.

The classical energy, as defined above, is the total energy of the sys-
tem if the wavefunction is forced fo remain an atomic orbilal as R is
decreased. The exchange part of the energy is the change in the energy
due fo the interference of y; and x,, that is, due to exchange of the elec-
tron between the left and right centers. As shown in Figure 12, £ is
weakly antibonding, and hence bonding in the g state of Hs results from
the exchange energy ¢f. On the other hand, the exchange term £ for the
u state is strongly repulsive, resulting in a strongly antibonding potential

curve.

These quantities ¢§ and ¢f constitute a quantitative representation of
the effects discussed qualitatively in §2.1.1. Thus, the decrease in kinetic
energy for the g states resulting from the decrease in the average gra-
dient in the waveiunction yields a large negative contribution to 7. The
increase in the pofential energy for the g state arising from the shift of
charge from the nuclear to the bond region yields a positive contribution

to 7. The net result is a negative 7, leading to a negative value for

g2 = T/ (1+5s)
and a positive value for

i = -1/(1-8).

2.1.5¢c Comparison of g and u States

For large R, where the overlap S is nearly zero, we see that (40) leads
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to

z -
&g = T

| A—
e = -1,

so that the bonding in the g state and the antibonding in the u state are
equal.

However, for small B the (1 + S) and (1 - S) terms lead to asym-
metry.‘ where the antibonding state is several times more antibonding

than the bonding state is bonding. Thus, at R = 2.5a; = 1.32 4 , we have

S = 0.4583

T = -0.1083 (e?/ap) .
leading to

g2 = —0.0743 (e%/ ag)

&2 = +0.20939 (e?/ap) ,
whereas

e = 0.00943 (e®/ ag) .
2.1.5d Analyiic Resulls

Explicit evaluation of the various quantities involved in the energy of

H# is carried cut in Appendix A, leading to

S=[1+R+ %—Rz]e‘ﬁ (41)
g% = —}é+(1+}1?)e‘23
= 8 p _ Lig-R Iy 1 p2y -3r
o= {33 F?_}e (1+T)(1+R+3R)e

t

where terms of order e ®F are neglected. Thus for large R
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TN—-}Z?—S. _ (42)

That is, the quantity T dominating the bond in Hy is proporiional to the
overlap between the orbitals. At large R, this leads to a bond strength of

the form
2 -R .
TR - g'f? e™™ (43)

thus the bond energy decreases exponentially with internuclear distance.

This simple relation between bonding does not hold for small R. We
saw above that 7 is a minimum (most negative) at R = 2a,, and the total
energy is also a minimum (bonding a maximum) around R = 2a,. On the
other hand, the overlap continues to increase as R is decreased until S =

tatR=0.
2.1.5¢e Contragradience

The above discussions indicate that the interference or exchange
part of the kinetic energy dominates the bonding in H3. This term is

dominated by
t* = B[<(Vie) + (Vx)> = S<(Vx)*>] (44)

which is large and negative in between the atoms. The region of space
leading to negative Vx, - Vx, (and hence dominating the bond) is indicated

for Hp in Figure 14.
2.1.5f Historical Development

H. Hellmann [after escaping from Hitler Germany into Russia in
~1934 and before suddenly vanishing into Stalin Russia around 193'?] was
the first[ Z. Physik, 85, 180 (1933)] to suggest that bonding arises essen-
tially fromva decrease in kinetic energy. He suggested that the bond in

Hg results basically because the electron is allowed to delocalize over the
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of VX;

dominates the bonding.
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region spanning two protons rather than just one. Using the uncertainty
pr‘mciplé, he reasoned that a bigger "box" for the electfon .leads to a
lower kinetic energy. Essentially the idea is as illustrated in Figure 15,
where we see that for the g, state the electron is distributed over a larger
volume in Hf than in H atom. From the study of a particle-in-a-box, we
know that the kinetic energy decreases as the box is made larger. Hence,
because of a decrease in kinetic energy, the ¢, state is expected to be

stabilized with respect to H atoms.

On the other hand, since the ¢, state has a node in the middle, the
energy is just the same as if we had put the electron in either of two
boxes, each of which is smaller than for H atom. This leads to an increase

in the kinetic energy.

Hellmann presented only very simple qualitative ideas and his view of
bonding was largely ignored until Klaus Ruedenberg [ Rev. Mod. Phys., 34,
326 (1962)] provided a more quantitative framework, showing (for specific
cases) that interference terms resulting from the superposition of ampli-
tudes leads to a significant decrease in the kinetic energy. Indeed, most
workers before Ruedenberg argued that the bonding results from elec-
trostatic interactions arising from increasing the density in the bond
region. The development in this chapter is derived from a series of
papers by C. W. Wilson, Jr., and W. A. Goddard Il [ Chem. Phys. Lett., 5, 45
(1970); Theor. Chim. Acta, 26, 195, 211 (1972)]. Other somewhat related
viewpoints have also been proposed: M. J. Feinberg and K. Ruedenbéfg, J
Chem. Phys., 54, 1495 (1971); M. J. Feinberg, K. Ruedenberg, and E. L.
Mehler, Adven. Quant. Chem., S, 28 (1970); R. F. Bader and A. D. Bau-
draut, J. Chem. Phys., 48, 1653 (1968). |
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Figure 2-15. Illustration of the differences in the effective size of the box
for the electron in the hydrogen atom and in the g and u states of Hy.
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2.2 The Molecular Orbital Description of H;

We will now add a second electron to Hf to obtain the Hp molecule.
The simplest wavefunction for H; is to start with an electron in the best
molecular orbital of H and to place a second electron in this ¢, orbital.

This leads to the molecular orbital (MO) wavefunction for Hg,

O}0(r1re) = g(r1)pg(r2) (1)
where
pg = (e + %)/ Dg . (Ra)
and
Dg = VE(I+9) . (2b)

With two electrons, the total wavefunction ®(r,,r;) must specify the proba-
bility amplitude for electron 1 to have each possible value of its three
coordinates (x,, y;, and z;, symbolized collectively as r;), and for electron
2 to have each possible value of its three coordinates (xz yz, and zz, sym-
bolized collectively as rp). Thus, the wavefunction must be specified for

all six simultaneous components of r, and r; as in (1).

First we will examine the meaning of the wavefunction (1). The total
probability for electron 1 to be at some position r,, while electron 2 is

simultaneously at some position r; is

P(rurz) = [9¥0(r;r) 12 = |gg(r)|? [9g(re) |2 = Pyri)Pelre) - (3)

This is just the product of the independent probabilities for electron 1 to
be at position r, and electron 2 to be at position r,. Thus, the probability |
distribution for electron 1 is independen£ of electron 2.* Summarizing, a
product wavefunction as in (1) implies that the electrons move indepen-

dently of each other (no correlations in their motions) and vice versa.

* Consider the analogous case of a red die (electron 1) and a green die (electron
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In addition to using the g, MO as in (2), we can construct wavefunc-

tions of Hp using the ¢, MO,

P = (0 - x)/ VET=T) @)
This leads to wavefunctions of the form
$ug(1.2) = pu(1)pg(2) (5)
fI’gu(l.Z) = pg(1)eu(2) (6)
Puu(1.2) = pu(leu(?) . (7)

Since the ¢, orbital is antibonding, the above wavefunctions of H, lead to
much higher energies than (1) (except at large R), and we ekpect an

energy level diagram as in Figure 186.

A — 9,0,
== g% %y%;

PP

Figure 2-16. Simple energy diagram for MO wavefunctions of H;.

22.1 Energies

For H; we use the coordinate system of Figure 17.

2). The probability of rolling a red 3 is 1/6 and the probability of rolling a green 5
iﬁ 1/8 so that the total probability of getting both a red 3 and a green 5 is

E—X -6—= -3-6—- The dice are independent so that the probabilities multiply.
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Figure 2-17. Coordinates for H,.

Using the same conventions and assumptions as for Hs leads to the Ham-

iltonian
A(H;) = h(1) + h(2) + ;%4- é— , (8)
Whére ;i? is the Coulomb interaction between the two electrons, and
where
h() = —HUF - o= - (9)

contains all terms depending only upon the coordinates of electron i.

- Consider now the energy of a product wavefunction

tw(ld) = puDon® (10)

and note that many two-electron integrals factor into products of one-

electron integrals, e.g.,*

<@ap(1.2) |B(2) |8ap(1,2)> = Jf [ d%r1d%rapa *(1)ep *(2)0(2)pal1)eb(2)

[f dPriga* (Va1 [f d’rapy *(20(2)en(2)] |

<PalPa> <pplhlpp> (11)

* Note that the < > notation implies integraticn over however many electrons
are in the wavefunction. .
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- = <gplhlep>

since <g,|¢.> = 1. In order to simplify the energy expressions, we will

define

hy = <gilhleg> . (12)
The integral that does not factor is the one arising from the 1/ry,
terms in the Hamiltonian, which we will denote as

;i *(1)@i(1ep; *(2)¢;(R)
Iz

< >
- 1 - 3. 33
Ji = < 8;(1,2)| — $;;(1,2)> = d*r,d°r . (13
ij < 1( )’ rlZ, J( )> ff 1 2 ( )

Note that

pi(1) = @i*(Lei(l) (14a)
is the probablity density for finding the electron in orbital i at position ry,
and

Pi(R) = #;*(R)¢i(R) (14b)

is the probability density for finding the electron in orbital j at position

r. Thus we can rewrite (13) as
{(1)psi(R
Iy = [[ & dr 31;)%(-)—. (15)

But (15) is just the classical electrostatic interaction energy (the
Coulomb energy) between the two charge distributions p; and p;. Thus we
refer to J; as the Coulomb integral between orbitals ¢; and ¢;. This term

cannot be factored into a product of one-electron terms because of the

riz = V(x; — %)% + (y1 = y2)* + (21 — 22)*
term.
ij

Since pi, p;, and ri— are always positive, we see that the Coulomb

integral is always positive



Jii = 0. (16)

Using the above results we can write

Bog = Zhgg +Jgg + = | (17)
Egu=huu+hgg+Jgu+f1{ (18)
Eyp = Eg . (19)
Buw = Zhuy +Juu + 5= | (20)

For R = 2a,= 1.06 A (the R, for HE), the MO wavefunctions lead to

(21)

= | (22)

"‘:lv—t
|

resulting in

Eug = Egu = » (23)

Ew =

Thus the MO states are ordered as in Fig. 16. Note here that the Coulomb

interactions are not negligible, but nonetheless, overall ordé;‘ing of states
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can be predicfed solely from considering the one-electron terms.
22.2  Symmetries

Before proceeding further in the discussion of Hg, we will examine
how symnietry can help us in sbrting out the states.
222a Inversion

Starting with the configuration of particles in Figure 17 and invert-

ing* the coordinates of electron 1 leads to Figure 18a,

e2
W4
V4 \\
Ta2 f’ AN
', \ Tb2
e/ \\
77 \
‘,/ R \ a R
a.r.—-—n---—.-,.b Qe e an W W = — - - - ‘b
// - VAN r =7
Tp1 / - 7 N\ al _ -~ 4
7l -~ Ta1 - Th1 \_ -7 T
- ’ - s "a2
o/ - a"\
L= (a) .{—" \*p2 ,’
el el ™= - S - \\ I,
T,
(b) 12 e2
Figure 2-18.

with electron 1 at a distance of ry, from nucleus a and r,; from b). Just as
for HZ, this does not change the nuclear attraction terms if the nuclei
have identical charges. Even so, the total potential energy is changedb
‘since the distance between electrons ! and 2 is changed. Thus, in order
to preserve the same potential energy, we must simultaneously invert
the coordinates of both electrons, leading to Figure 18. Thus we define

the 'mvérsion operator, 1, for Hg as

* Recall that the center of inversion is the bond midpoint.
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X; @ —X X2 * =Xz
yi » —y1 and ¥z > -yp ' (Rda)
Zy =@ —Z 2z » —ZIp
or
r, » -n and rz = -rs , (24b)

and the total Hamiltonian is invariant under this inversion,
TA(ryr) = H(-r, -r) = Hr, re) . (25)
The exact wavefunction for Hy is obta_ined by solving |
H(1.2)8(1.2) = E #(1,2) (26)
(don’t panic; we won't try this yet). Since #(1,2) is invariant under the
inversion T (25), we find that (26) implies
B(@1%) = E(1$) (27)
and hence (just as for H¥), the exact eigenstates of H; are either g or u,

T8,(1.2) = + 84(1.2)
| (28)

T8,(1.2) = = &,(1.2) .
Applying the T operator to the MO wavefunctions (1), (5)-(7) leads to

the conclusion that

$,; and &y, are g states |

(R9)
and

¢,y and &, are u states.

Since a u wavefunction must always have a nodal plane, somewhere we

expect the ground state of H; to be g, just as indicated by Figure 186.

2.2.2b Permutational Symmetry
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The Hamiitonién for Hp is unchanged if we renumber the electrons so
that electron 1 becomes electron 2 and vice versa, that is,
A1) = B(1.2) . (30)
: To discuss such symmetries we deﬁne the transposition operator 7,; as
r - r and r: - r . (31)

Thus, starting with the exact wavefunction (26), applying T,z to both sides,
and using (30), we find that

A(7128) = E(1129) . (32)

Since (le)ztransposes the electrons twice, taking us back to the original

starting point,
(T12)2 = TigTiz = e (33)

[where e signifies doing nothing, i.e., the unity or einheit (German) opera-
tor], we can show (just as for inversion) that the exact eigenstates have

the behavior

Ti2 @8(1'2)

$%(2.1)

+ 9%(1,2)
(33)
or

T129%(1,2) = ¥%(2,1) = — $2(1.2)

under transposition. Examining the wavefunctions (1), (5)-(7), we see

that

T12[9a(1)eg (R)] = [wg(1)eg(R)] symmetric (35a)

712{5%(1)5011(2)} [Gpu(l)?’g(z)]
ne symmetry

712[¢u(1)¢g(2)] = [‘Pg( 1)¢u(2)]

Ti2[Pu({D)9u(R)] = [9u(1)eu(R)] symmetric . (35b)
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Thus the g states, &,; and ®,,, have the proper permutational symmetry,
but the u states, $;, and &, do not. In the next section we will fix up this

problem with the u states.
2.2.2¢c The u Stales

Combining the u wavefunctions as follows*

3, = (pgpu — pupy) (36)
'8y = (so;s_ou + ¢ugg) (37)
leads to
T1238, = (puPg — Pepu) = — 38, (35c)'
Tiz '8y = (pupg + P = + &, (35d)

so that the combinations (36) and (37) have proper permutational sym-

metry.

Now we must examine the physics behind the combinations (36) and
(37). Aside from mathematical analyses indicating that the wavefunc-
tions should have permutational symmetry, we also want to determine

why one combination is favored in terms of achieving a lower energy.

In order to carry out such an analysis, we will plot the two-electron
wavefunction for the case where both electroﬁs 1 and 2 are along the
bond axis (z). In order to show the relative locations of both electrons,
we will let the z coordinate of electron 1 be the ordinate (z,) and the z
coordinate of electron 2 be the abscissa (zz). This is indicated in Figure |

19 where some special points are indicated.

* The notation will become clear when we discuss spin in Chapter 4.



-33-

el at right nucleus

2z
;Al [ez at left nucleus 1 and e2 at right nucl
el and e2 at right nucleus
. [}
b =---% --_.:--_'l(’
T ' . .
1 . ' el at bond midpoint
| 1
0 J,---:,---+...--z- e2 at right nucleus
1 | i
' ! '
a--—_]__--'---.l--
§ ! |
R
T o 8 -

Figure 2-19. Coordinates showing simultaneous positions for z, and Z,.
In order to see how to plot ’ﬁhe wavefunction on Figure 19, consider the

orbitals ¢, (z;) and ¢, (zz) in Figure 20ab.
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Figure 2-20.
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Multiplying these orbitals leads to the wavefunction &4(z,. z2) with ampli-
tudes at various points, as given in Figure 20c. Rather than listing
numbers as in Figure 20c, we will draw contours of equal amplitude as -
indicated in Figure 20d, where solid lines indicate positive amplitude, dot-
ted lines indicate negative amplitude, and long dashes indicate zéro
amplitude. Here one sees that the maximum positive amplitudes occur
for z; = a and 'z, = a or b, while the amplitude remains large or positive
between the above two points. The maximum negative amplitude occurs
for zz = b and z, = a or b and remains large between the above two points.
For z; = 0, the total wavefunct.ion is zero, independent of z;. The reader
should practice constructi I\éOd directly from Figures 20a and’ 20b
(without going through Fig. 20c).

In Figure 21 we compare the two-electron wavefunctions of &,,, @,
3., and &, All cases involve a single nodal plane, and if there were no
electron-electron interactions, all these wavefunctions would have the
same total energy.* The difference lies in the electron-electron interac-
tions. In Figure 21 e we see that the 3%, wavefunction is zero along the
line with z, = z;, whereas in Figure 21f we see that the largest values
(positive and negative) of '&, occur for z; = z;. Since the electron repul-

sion term

e?

e

is large and repulsive when the electrons are close, we see that 3@, is
favored and ¢, is disfavored. Indeed, considering all possible combiné—

tions of &, and &, the one with the lowest electron repulsion is just 3¢,.

* Note from (18) that both u states have the same total energy and that any com-
bination of these states leads to the same one-electron energy, hy, + hg,.
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Thus the energy diagram for the MO wavefunctions of H, becomes as

in Figure 22.
double excitation Pufu = ¢y
PePu t PuPg = 9,
single excitation —{
PgPu — Pufg 3@u
ground state —————— gy, = @,
Figure 2-22.
e.e.ed Quantitative Aspects of the Energies for the u States

Now that we see the physics behind why the 3¢, wavefunction (38) is

the best u state, we will examine the quantitative energy expression.

3 - <3@u|H|3¢u> - Sgu—ung[gu—ugL
ECO) = S =ms —

<3¢,|H|%,> = <gu-uglgu-ug>
(38)
- R2<gu|H|gu-—ug> - <gul|H|gu> — <gu|H lug>
2<gujgu — ug> <gu|gu> — <gujug>
Since
<gulug> = <glw<ulg> =0
<gu|h{1)|ug> = <glhju><ulg> = 0
<gu|h(2)|ug> = <glu><ulh|g> = 0 ,
we are left with
E(38,) = Eg — <gu|H|ug> . - (39)
where '
< 1 >
<gu|Hlug> = <gu| —|ug>
< R >
(40)

- Jf‘f dst'ldsrz ¢g‘(l)¢u(1)¢u*(2)¢g(2) = Kgu .

iz
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where this two-electron term is called the exchange integral between

orbitals g, and ¢,. The net result is

E(®*3,) = Eg — Kgu

; (41)
E('®y) = Egu + Kou -
Since the previous section showed that
E('®,) > E(3%) .,
we see that the exchange iﬁtegral must be ﬁositive,
Kp=0. (42)

What is the physical significance of K,;,? It tells us how much the
two-electron energy changes when we go from the wavefunctions in Fig-
ure 21 ¢ or 21d to the wavefunctions in Figure 21e or 21f. Thus the K, is
the quantitative representation of our earlier argument that 3¢, has a

better two-electron energy than ',. It is better by precisely 2Kg,.

Another way to look at this is to substitute (17) into (40), leading to .

E(sq’u) = [hgg + hyy + fli_] + [Jgu - gu]
(43)

. 1
E('®) = [hg + hy +'ﬁ + [Jqu + K] -

Here J,, — K,y is the total two-electron énergy of Figure 211, while Jz, + Ky,
is the total two-electron energy of Figure 2le, and Jg, is the two-electron

energy of Figure 21c and 21d. The two-electron energy of 3¢, can also be

written as
< >
<8¢, ;1_.8(;;“> 3p(1.2)
< 12 > (1,
Jau — Kau s - [ [ &3 ,d’r, —a (44)
where*

;
* The é— comes from <3¢, |3% > =2
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3p,(1,2) = -é—-%u‘(l.z) 3%,(1,2) .

Since 3P, is the absolute square of 3¢, it is positive for all possible values
of r; and r,. Since the integral in (44) is always positive, we see that the
total two-electron energy of the 3¢, state must be positive

Jgu—Kgu = 0, (45)
and hence

Jou = Ko (486)

the exchange integral is always less than the Coulomb integral. Combin-
ing (46) with (18) leads then to*

Jou = Kgu = 0. (47)

2.2.3 Potential Curves

So far we have discussed the MO wavefunction assuming that the
bonding orbital ¢, is much better than the antibonding orbital ¢,. This is
true for shorter internuclear distances R but does not remain true as the
bond is broken. Thus, in Figure 23 we compare the energy of the MO
wavefunction ¢,, with the exact energy for the ground state of H,. This
MO wavefunction leads to a good value for the bond length but a very bad

description of the processes of breaking the bond.

The origin of this problem can be seen by substituting the atomic

orbital describtion of the MO (2) into the MO wavefunction (1), leading to

)

NDuxi + XeXe + XaXe *+ XeXt]
(48)

= ®covalent + Pionic -

where N = [2(1 + S)]* and

* This relation is true for any pairs of orbitals, as shown in Appendix 2-C. |
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Figure 2-23. The energy of the MO wavefunction for the ground state of H;
with comparison to the VB and exact energies.
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Beovalent = NOGXr + XeXe) (49)

Bionic = Nxixi + XeXr) - (50)

At very large R, the exact wavefunction will have one electron near the
left proton and one at the right, as in (49), which we will refer to as the
covalent part of the wavefunction. The other terms of (48) have both
electrons near one proton and none near the other, thus an ionic
wavefunction. At R = =, these ionic terms lead to the energy of H™ and H*
rather than the energy of two hydrogen atoms. Since the MO wavefunc-
tion must have equal covalent and ionic contributions, it yields terrible

energies for large R.

- The basic problem with the MO wavefunction is that both elecﬁrons
are in the same p, orbital and hence each electron has an equal probabil-
ity of being on either center, regardless of the instantaneous location of
the other electron. In the exact wavefunction, the motions of the elec-
trons tend to be correlated so that if one electron is on the left, the other
tends to be on the right. This correlation is necessarily ignored in the MO
wavefunction, and the resulting error is often referred to as the correla-
tion error. For small R, the two centers are close to each other and this
neglect of correlation is not so important. At R = e, howe%/er, the correla-
tion of electrons is of paramount importance and neglect of correlation

leads to ludicrously poor wavefunctions.

In the next section we will discuss a simple wavefunction, the valence

bond wavefunction, that eliminates this problem of describing large R.
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2.3 The Valence Bond Description of H,
2.3.1 The Covalent States

We will now reexamine the grouhd state of Hp molecule. However,

rather than the approach of the above section (plopping electrons one by

one into the orbitals of HZ), we will instead start with the exact wavefunc-

tion at R = =». This, of course, consists of two hydrogen atoms infinitely

far apart, say electron 1 on the left and electron 2 on the right as in Fig-

ure 24.
el
’P
,"rla
[
a
> R=o

Figure 2-24.

The wavefunction for Figure 24 is

b (rir2) = xi(rxr(re) .

where

x(r) = Ne

N e 'e2

Xr (r2)

(and N is the normalization factor).

(1

(2)

This wavefunction &, says that the probability of electron 1 being at a

particular position is independent of where electron 2 is and vice versa

(since the atoms are infinitely far apart, the electrons should not be

influenced by each other).

There is a second wavefunction that is just as good (or as bad) as &,

in (1), namely,



(2 #(1,2) = xg(x @)

b <4 . .
z,
a 1 .
1 1
 § ¥
a b
2,
{(c) Qg =&, + ‘b
= x!Xr + erl
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(0)  &#,(1,2) = xp(1)x ¢(2)

L

(d) d =P =&

= x!xr - X.rx!
’/ -s\ 7
et e
b = ’\{i.')]\)\ /. :
S 7
z; //
T /./ )
7
. —
a b'
2z,

Figure 2-25.
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By (r1re) = Xr(rx(re) . (3)

where the electrons have been interchanged. This wavefunction ¢, is
different from $, since electron 1 is on the opposite sides of the universe;
however, the energies of &, and ¢, must be the same (since electrons 1

and 2 have the same properties).

We will find it useful to combine ®, and %, into two new wavefunc-

tions,

8,(1.2)

9,(1,2) + &,(1.2) =X (Dxr () + X (Dxa (R) (43)

$,.(1,2)

85(1.2) = 8, (1.28) = x(Dx(R) = xr(x: (R) (4b)

(unnormalized) because at finite R these are the optimum wavefunctions.
Before examining the energies, we need to understand how to think about

the relative locations of the electrons in these wavefunctions.

In Figure 25, we plot the four wavefunctions, &,, ¢,. %;, and &,. Here
we see that &, has a nodal plane (coresponding to z, = z;) while &, does
not. Indeed, along the line between the two peaks in Figure 25c, we see
that the gradient of the &, wavefunction is smaller than that of ¢; or &,,
while the gradient of the &, wavefunction is larger. This decrease in the
gradient of &; (and increase for ¢,) depends upon R with a bigger effect
for smaller R; thus, based on kinetic energy, we would expect that &; is
bonding and ¢, is antibonding, and indeed this is the case, as shown in

Figure 26.
232 Symmetry
Inversion of the coordinates of the electrons r,; €>rp; and r.; > rye

leads to [see (R)]

x(n) € x(n) .
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Figure 2-27. The energy of the MO wavefunction for the ground state of Hy
with comparison to the VB and exact energies.
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Consequently: :
Té.(r.rz) = Xr(r1)X¢(Pz) = &, (r.rp)
or
19, = &,
As a result,

Ta, - I(dg + &) = (B, +&,;) = &
| (5)

~

18, = I(®; — &) =&, -9, = -9, ,
and we see that ¢; and &, are indeed gerade and ungerade, respectively.

2.3.3 Comparison of VB and MO Wavefunctions
2.3.5a Ground Stale

The MO wavefunction is (ignoring normalization)

Daxe + x00 ]+ Daxe + Xoxe]

dMO(1.2) = py(1)py(R)

whereas the VB wavefunction is

B(1.2) = [xxr + Xoat] -

The energies for these wavefunctions are compared in Figure 27 where we
see that the VB is always better but that the difference becomes negligi-
ble for small R. |
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Figure 2-28.

The wavefunctions are compared in Figure 28, showing graphically
how the VB wavefunction has smaller probability of having z; = z;, leading
to lower electron repulsion energies. On the other hand, the MO
wavefunction is smoother, leading to smaller kinetic energies. For nor-
mal bond distances, the electron repulsion eﬁecté dominate so that the
VB wavefunction is better. However, for very short R, the kinetic energy
becomes dominant so that the MO and VB wavefunctions lead to nearly

identical total energies.
2.3.3b The u States

Expanding the MO's in terms of AO’s (and ignoring normalization)

leads to

$gu = L +r)l—r) = U+rl —lr—rr

g = X -r)(t +r) = U -rl+ir—-rr .
Thus |

3§, = By — &y, = 2(rl —ir) = B (e
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1, = gu+ug = 2(U —rr) = N (7)
That is, the first excited state in the MO description, 3%,, is identical to
the first excited state in the VB deécription. Both describe a covalent

- repulsive state that separates to two free H atoms, as indicated in Figure

<8.

The second state, '$,, leads for R = = to the wavefunctions x;x

corresponding to

and x-xr correspoﬁding to
H* H™ .
Thus we refer to this state as the ionic state. The energy curve is shown
in Figure 29. -
2.3.3c The Second g State

In the MO description*

MO = 1 —~r)l -1r) = [(U +rr)~(Ur+1rl)]/2(1-5)

(8)
QU = (L+r)l+r) = [((+rr)+Ir+rl)]/2(1+5) .
In contrast, the VB description leads to*
8P = (Ir+rl)/ V(1 + 59 9)

N = (&t +rr)/ V2(1 + 59)

for the covalent and ionic g states.

The connections between these states are

VB 1 [ MO _ (4 _ MO
ég —_—'———m l(l +S) @gg (1 S) ok

* Now we include normalization factors.
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(10)
- _(1+9) [q,uo__;'\@m
V(i + ) L %8 w
where
e (11)

Thus we can fix up the MO wavefunction so that it behaves like the VB
wavefunction by mixing together the X% and #}? wavefunctions. This is
related to the configuration interaction (CI) wavefunction, as discussed
below. For large R, S = 0 so that A = 1, whereas for R = 1.6a, =084 ,S=
0.7, leading to A = 0.18. Thus the CI is most important at larger R.

For a more general description of these states, we would consider the

wavefunction to have the form

8 = C, 80 + C; BMP (12a)
or*
87 = D, 88% + D, 810N | (12b)

and choose the coefficients that lead to the best energy. This is called
the configuration interaction or CI wavefunction and leads to the results
shown in Figure 29. The excited g state, g}, can also be taken to have the

form (12); however, it must be orthogonal to &{}, leading to
<3G|8f> =0 .

The overlap between the covalent and ionic g states is

: ION|gCOVs — <U +rrjir+ri>
<BON|pLoV> ) (13)
- 23
1+8%°

* Equations (12a) and (12b) lead to an equivalent total wavefunction, as can be
seen by comparing (8) and (9).
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Thus, for S = 0.7 (R = 1.6a5 = 0.8 A ) this overlap is 0.95, demonstrating
just how similar are the ionic and covalent wavefunctions for srﬁaﬂ R. This
creates a problem in describing the excited g state. The VB wavefunction
is a close approximation to the ¢ wavefunction; however, except fof S~
0, the /% wavefunction is mot a good approximation to the excited state,
$§i. Instead, we must orthogonalize & to #£%, leading to new nodal
planes and a much higher energy. This explains why the &§ state is
always above the &I state. Based on the nodal theorem, we would
expect that $J% (which has no nodal planes) would have a lower energy
than ®!%, and it does. However, the only nodeless state is the ground
state ®,, which mixes whatever combination of #% and &N gives the best
enérgy. The excited g state, ], necessarily has nodal surfaces since it
must be orthogonal to the ground state. The result is that the ionic g

state, $§, is always above the ionic u state.
23.4 Quantitative Analysis of Bonding in H;
We will analyze the energies of the VB wavefunctions for the g and u

states of H; in a manner very similar to that used for the LCAO wavefunc-

tion of the g and u states of Hy.

First we consider the energy of the simple product wavefunction

4 (1,2) = u(1x( = xx . (14)

which is just part of the wavefunction for the g and u states, (4a) and
(4b). We will refer to this wavefunction as the classical wavefunction and

the energy

Ecl - <q,cl !H {q,cb

<®cl l@tﬁ) )
(15)

by + by + Iy + 2
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as the classical energy.

The total energy of H; differs from the classical energy due to the
presence of a second term in the ‘wavefunctions (4a) and (4b). The
‘second térm has the electrons interchanged (exchanged) and hence is

called the exchange term.
The effect of the exchange term in the wavefunction, say (4a), is to
change the energy from E® to E,. We will refer to this change in energy

as the exchange energy E*,' so that

E, = E° +EZ
(16)
E = E® +E¥

In Figure 30 we show the behavior of these quantities with R. Jﬁst as for
HZ, we see that it is the exchange termm that dominates the bonding
energy. Indeed, we will find that it is the one-electron part of the
exchange terms that provides the dominant interaction, just as for H#.

First we consider the detailed form of the various energy quantities.
2.3.4a Analysis of £%

At large R, the one-electron term

< 1 > < >
hy = <G| =BVB-=—>+<0 |- — x> .

< Tz > < >
v ~ _J L ~— J

atomic energy penetration term

has the form
hy N g — = . (17)
18 R

Neglecting terms of order e, and the Coulomb term has the form

1
Jir ™~ R_
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Figure 2-31. The total exchange term (%) and the one-électron (+,) and
two-electron (73) parts. The potential (7,) and kinetic (%) parts of 7, are
also shown. All results are for Hs. - ’
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(neglecting terms of order e 2®). Thus the classical term is just twice the
energy of an H atom (z,4), -
E® =~ 2813

(neglecting terms of order e ), with no net Coulomb terms. Including

the additional penetration terms leads to

1 ) 3 1 ~
E = 284+ §_+ -8—+ -4-R-— E-Rz e?R (18)

corresponding to the interpenetration of the two atomic electron clouds.
Although negative for R > 1.4a,, this quantity is small, as shown in Figure
30. Thus the bonding of H, cannot be explained as due to penetration of

the charge clouds of two hydrogen atoms.
2.3.4b The Exchange Terms

Now we consider the energy of 8¢, (4a),

Ep = <& |H(8,>/ <8,|8,> .

By symmetry
<$|9,> = <uxr|®Bg> + <xoo [ 85>
= 2<X1Xr|q’g>
and
‘<§=g]f31|¢g> = <uxel B 8> + <oy | H 18>
= 2<xx | B 18>
Hehce

= <X1X5|ﬁ|@g>
& Xxri®g>

Evaluating the individual terms, we find
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Quxrl®> = 1+ <xlxe><xelxi>
=1+
and
x| B18> = <uxel Blxexe> + <uxel H o> = E* + &
where

E = <uxlBlxx> (19)

is referred to as the VB exchange term. Thus

E® +
R T @)

where the exchange energy is

= &S0 (21)

(1 +S?

The same analysis for the $8 wavefunction (4b) leads to

cl __
R (22)
where
- Wt
EZ = -%—_SEE—)—L. (23)

The close relationship between EF and Ef is emphasized by defining*

T = (§-SE) (24)
so that

EE = Zl—-:rs_z) (R5)

BF= —1 . (@9

(1-59)
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From (25) and,(26) the energy separation between the g and u states is

2‘.;-
1-5*

E, —E, = (27)

From the nodal theofem, E;, < E,, and hence
T <O
since S < 1.

These results for H; are quite analogous to the case of HF where the

¢z and ¢, state have energies

gg = &% + liST (28)
gy = gl — TJ:—S—T (29)
Eg— &y = q _Z_Tsa) , (30)
with
g = hy + }12— (31)
T = hyy —Shy . (32)
2.3.4c Analysis of §
The components of g (19) are
<uxe h() x> = <6 lhDxe> < x>
= h,S
<X h(R) x> = <x x> <xelhlxe>
(33)

* We use 7 here in order to distinguish this quantity for Hp from the T of Hg".
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Shrl

Jama (W) [ dre 1 —x (2 (@)

1
<XeXrl ;:;'l XeXt>

]

Kir
1 2
<Xt Xr| gJXrXD = %— .

where S is the overlap and K, is referred to as an exchange integral.
(Note the distinction between 5’ the VB exchange term, and K, the
exchange integral.) Thus, |

= Sid
F = 2Shi+ Kot 3. (34)

2.3.4d Analysis of 7

Using E¢ from (15) in (24), we find that

T =TT, (35)

where
7, = [RShy — S¥(hy + hy)] = 25[hy, - Shy] = 257 (36)
T = [Kir — S%,] (37)

are the one- and two-electron parts, respectively.* These quantities are
plotted in Figure 31 where we see that 7; has a smaller magnitude that 7,.

Thus we can write
TN - (38)
Comparing (27) and (31a) we see that

* The -i;—terms cancel.
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that is, the oﬁ_e- electron part of 7 for Hy is related directly to the T of Hi,

le ad’ing to

= o

7 €7 = 257,

(40)

where 7 is the quantity for Hg. Thus, for Hp the bonding energy is deter-

mined by
x RST  _ %x
Be ™ Tysr T e (41)
;ST _ =
EX m T = EX (42)
whereas for HZ it is determined by
=TS (43)
~ These quantities are compared in Figure 32.
W ‘\‘\ Ha
L N \ vB
E 02 ! E:(Hz)
% \\‘ E:(Ha)
= ok AN <— €X(H3)
> Y,
© N
@ N
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w \\ ‘/.f" P
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Figure 2-32. The exchange energies (
the one-electron approximation E* to

i

and EX) for Hf and H.. In addition,
e E* for H is shown for each state.
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2.3.4e Analysts of 7, = 25t

Since the quantities ¥; and 7 dominating the bonding in H, and Hg are

related,
-5'1 = ZST

it is well to examine the reasons for these relations. The wavefunctions
for the bonding states of H; and Hy are sketched in Figure 33ab. In both
cases the kinetic energy is decreased from that in the classical wavefunc-
tions, Figure 33cd. The decrease iIi the kinetic energy for electron 1 is
obtained by examining the gradient.é in the vertical direction (ordinate)
of Figure 33abcd. Here we see that HZ leads to a larger decrease that Hs.
Thus the contribution is St for H,; but 7 for Hf. However, for H, there is a
second electron (number 2) that has a similar decrease. Thus, for H; the

net is 2St as compared to 7 for Hg .

(@) Hy &, = (XgXp + XXy ®) H; ¢ = (Xg+X)

z, 2,
:
2, x,
() H, #°* @ = ¢
- -
z, LT z, @
z, x,

Figure 2-33.
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2.3.4f Comparison of Bond'ing in Hpy and Hy

Although the bonding energies of H, and Hy are both determined by
7, We see from (41)-(44) that the value of the overlap S also plays an

important role. From 2.1 the form of 7 at large R is
T 8 —(2/R)S ,
hence
7, = 257 & —(4/R)S? . (45)

Thus the bonding in Hy is proportional to S, but the bonding in H; is pro-
portional to the square of S.

At R = 1.8ap, the value of S is

S = 0.7,
and hence
He: Ef = 094
Ef = =271
(48)
Hs: g = 0677
£ = -3.337 .

Thus the g state of H; should have a bond energy about 50% larger than
the g state of H#, while the u state of Hp should be 17% less repulsive than
the u state of HF. In addition, we see that the u state of Hp should be

about three times as repulsive as the g state is attractive.

- At R = 3aq, the overlap is S = 0.1 and hence we obtain
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Hg: Ef = 0207
EXf = ~-020T
(47)
Hi: g = 0917
e = —-1.117 .

Thus, at this large R, the g and u states of H are five times as attractive
or repulsive as the g and u states of He. That is, at lerge R, the one-
electron bond 1is much stronger than the (wo- electron bond’ This
difference in relative bond strengths of Hy and HZ for small and large R
just results from the overlap term S that automatically arises in the

exchange of a two-electron wavefunction.

In the limit that S = 1, we have*

Hg: ng

T

HZ: & = BT,

leading to an H; bond twice that of Hs, the commonly expected result.

PROBLEM: Experimentally (and theoretically), the molecules Lif, Nag, KJ,
with one-electron bonds, are found to have stranger ‘bonds than the
corresponding molecules Lip, Nap, Kz having two-electron bonds. Explain

the origin of this effect.

* Actually, S = 1 implies R = 0, which in turn implies T = 0



APPENDIX 2-A: ENERGY QUANTITIES FOR H2+

We will consider an atomic orbital of the form

x=VE71 e °F (1)
centered at each of the two nuclei of Hy . The coordinates are indicated in
Figure 34.

e :
7
7
s/ /|
s/ / ’
r 7 / v /
a ”~ J D /T I'p
7 / ’
d /
v . -/ l
e / /0 .
== 4 “« L-—s=d
R
R/2 -z
(@) Figure 2-34, (b)

With € = 1 . the orbitals (1) correspond tohydrogen 1s orbitals on each center.
First we evaluate the atomic integrals for general {, then the new
energy quantities occurring in H2+.

2-A.1 Atomic Energy Quantities

The norm of X is 2qr ©

m
x|x) = (/7 [ sinede [ de [ rdr e~ 2%

\0 0 , 0

‘ 4an
[- ]
= 4¢ f r dr e-2§r
0
o
2 .
=1fpePap
0
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Similarly the atomic potential energy is

a0

(Xl-% v =-4¢° [r’ar e 2T

0

=-t,
and the kinetic energy is
2 2 2
x|-3v 1% =% (vx[) =5 «lx
1 2
H

3
¢ 3)

g;A.z Elliptic Coordinates

In evaluating the energy quantities for diatomic molecules, it is

convenient to use elliptic coordinates

£ = (ra + rb)/R

@ = azimuthal angle about the z axis (measured
from the xz plane)

in place of the cylindrical polar coordinates p, ¢, z (see Fig. 34b) or
spherical coordinates r, 8, ¢. (See Fig. 34b.) The geometric condition
defining an ellipse is that the sum of the distances to'the two foci is a constant,
and hence each curve of constant £ corresponds to an ellipse. Similarly
from the defining condition for a hyperbola,each surface of constant n correspongs
to a hyperbola. The range of the elliptic coordinates is

0=:(< =

-1=n=+1 | ®)

0=¢p< 27 |
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The volume increments in the various coordinate systems are

dr = dx dy dz
dt = p dp dg dz
2
d7 =r sing dr d6 deo
1 3, 2 2
dr=sR (§ -7 ) dédndy

The latter relationship can be derived from

X

IR\E - DU -17) cos o
y=%R%&2-nu-n3 sin @
'z =3RE

(6)

(7)

2
since the Jacobian iR (52 - 0 ) is just the determinant of the derivative

matrix,
From Fig. 34b we see that
R.2
r;) =p’+ (z - 7)
2 _ 2 R\2
T, =P+ @ +3)
r* =p*+2°,
and hence
1. 2 2, 2 B 2
_g(ra1 +rb)—r + (2)
and

2 22R‘
ra-rb—z.

From (4) we find
Y1) =(r, +x, )/R
2 2 2
&n = (ra - rb )/R

2 2_4 /Rz
g"’i—rarb s

(9)
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and hence
2 2 2 2
r =R [&+79 -1]. ‘ (8)
These relations will be useful in the next section.

In evaluating integrals over & the following integral will be

useful
an
m -aXx le” a - ‘
[x"e dx=n;m+1 Z— (ax =Am(axo) (10)
X

0

Forx, =land m = 0,1, and 2 this becomes

Ay (a) = a -e | (11)
A (e) =i— %1+ a] . (12)
Ay(a) =&2- e ¥[1+a+3a] (13)

2-A.3 Diatomic Energy Quantities

2-A.3a Qverlap Integral

First we evaluate the overlap integral,
S = (X ] Ixr ).

Using (1), (6), (11) and (13), this becomes

© - 4]
S= farx, xp =€) By @) [ag [ an (8 - o')e 2ERE
1 -1
=B [14 R + $CR)') g

2-A.3b The Exchange Potential Energy Term

There are two terms involved in evaluatihg the potential energy

of H;, the exchange terms
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_ ~
Ve = Xplvix , (15)
where.
‘ ~ 11
r, T, (16)
and
_ ”~
T <x£‘fV|x£>. (17)
In this section we evaluate V o
First we convert V to elliptic coordinates
(r +r,)
{7\. = - ..._a_I'._r_..Q_ R ———2-4—-§—2— (18)
a'b R(§ " 1)
using (4) and (9). Combining (18) with (6) leads ta
far = - &R'£ d¢ an do,
and integrating over @ we obtain
2
- (R C -CRE
v r-(—7>(—)(2w)f £d £e f a7
-1
(19)
-¢R
= -2Ce (1+¢R) .
A.3c The Penetration Term
The other potential energy term V ") has two parts
= 21 I S IV
V= (X, ;alxg>+(x£l rblxp}, ; (20)

the first of which

vl = o l- 1 ixp (21)
a.
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is a one center integral (involving only the left nucleus) and the other

of which
V(2) -

=l lx£> - (22)
involves two centers. This second term is the Coulomb interaction
between the spherically symmetric charge distribution Py = [xﬂ |2
centered on the left nucleus with the charge centered at the right

nucleus and is referred to as the penetration integral.

As shown in equation 8 of Appendix B

vi2) _
ﬂl =A+ B,
where s @ 2
-2¢r
B=-tn(t) [ rydrye 2
R
-_.9Q
A=-g
and
s R -20r
=47r(§7) f rza drae a
0
USing R
frzdrea =&32— [1-Q+aR+ 2aR)e 0':R] (23)
0
we obtain

Q=[1-(1+2R+2R )e'zCR]

Using (10) we obtain

-20R

B=-Ce (1+ 2¢R),
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and hence

2 1 -2CR -2CR
Vfu) -gl-e By, e R (25)
2-A.3d The Kinetic Energy Term
‘The two-center kinetic energy integral is
b = Xpl-37 |3
r 72 IXp
which from Appendix 1-A becomes
_1
tor =2¢V Xy er> )
(26
=3 [ar (Vx; vx)
Since
r =w/;<2+y2+ z - R/2)°
ra :‘/X2+y2+ (Z+R/2)2 ’
we obtain
e 'Cra_ s -Cra[ A ~ +( +1R)A]
Ve _-rae XQ + Y& + (2 + T,
-Cr -Cr
b__ £ br A a _ 1pya
Ve = -rbe [xeX+yey+ (z zR)eZ]
(where QX denotes a unit vector in the x direction).
Hence ¢ :
-¢r -Cr .
(% - (e B =@/ ey R ()

Using (6), (8), and (9) we obtain

ar(vx, « v )-H;)(—C; EHE)REE 4 o - patando,



Integrating over ¢ and substituting into (26) leads to
35 ® +1 _
- ) 2
=iRC fage™®E fan a9
1 , -1

oy

R [ (- Y e Ry
1 .

18 Bl14r-1eR)] .

2-A.4 Summary

Collecting together the quantities of the previous sections

we have
x=\Ne/x &F
teg = X o[tlx ) = 3¢

(1) _ 1 = -

a

S = (xlx) =e FI1+ R+ 4(¢R)’]
tp = Xltlx =37 B 14 R - 3R]

Ver = Xgllg -3l = -2 R 1 om

v =L s e ¥R

2-A.5 Qualitative Examination of Diatomic Quantities

The amplitude of X, evaluated at the left nucleus is :

3 -
Xy (R)=\I§/1r e SR
while the amplitude of Xy at the left nucleus is

X, (0) =‘1§3/ﬂ

(28)

(1)
(2)

®)
(14)
(28)

(19)

(25)
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| .Thus
X, (R) =R X(0) (29)

If X, were highly concentrated about the left nucleus the overlap would
~ be given by

S=e (30)

Comparing with the correct formula (14) we see that the approximate
form (30) has the correct exponential behavior on R but the numerical
coefficient in (30) is correct only for R = 0. Using R = 2, 0a, and

¢ =1,0in (14) leads to a coefficient of 3. 33 and using R = 6. 0a, leads

to a coefficient of 19. 0, many times the value obtained with (30).
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APPENDIX 2-B. THE LEGENDRE EXPANSION

Consider a system such as in Fig. 34. It is often necessary to
convert expressions -involving say the distance of the electron from
nucleus b over to a new expression involving the distance of the electron

from nucleus a, as indicated in Fig. 35.

r
4 b
a R b

Figure 2-35.

The relation between these coordinates is
2 2 2
r, =r, + R - 2raRcoso (1)
A case of particular importance is to convert l/rb over to the new

coordinates. This leads to

1 . ——— 1 - [e)
Ty r, 1+p°-2pcos b

where p = R/r o+ Ifp<1the radical in (2) can be expanded as

1 o

S pQPﬂ (cos 8) , 3)
V1 +p2-2p cos 6 =0

where the P 0 (cos @) are the Legendre polynomials
P, (cos9) =1

P, (cos §) = sin @ (4)
P, (cos8) = (3 cos’ 9 - 1)
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Thus (2) becomes

_1_=°Z°_§__(r P

(cos 6) , (5)
Ty =0 (r))£+1

where r ¢ and r) denote the lesser and greater, respectively, of r, and R.

If there is a spherically symmetric charge distribution p,(r a)

centered at a, thenthe total electrostatic interaction with a charge centered

at b is
1
vV = depa_(ra) T,
b .
oo 0 5 r 'Q T '
= 271 ) fo r, drapa(ra) ;Jm j; sin 6 d6 P (cos 6) ,
=0 )
where we integrated over the ¢ coordinate. The Legendre polynomials

have the property that
1r »
j; sin 6d6 P, (cos 8) = 26, , (7)

so that (6) becomes

o0

2 4 1
V = 471 fo r, drap(ra) -17;
R o
1 2
= 41r{—ij; r, dr p (r,) + fR radrapa(ra)} . (8)
The quantity

R , -
Q = 47;](; r, drapa(ra) o (9)

is the amount of charge within the sphere centered at a and passing
through b. The contribution of this charge to V is just the same as if

all this charge were concentrated at a.

(6)
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The quantity

)or (10)

2
0Q = 47 r, pa(ra a

is the amount of charge on a sphere of radius r a and thickness ﬁra. The

potential within such a uniformly charged sphere is constaht and equal to

_g_ 6 Q as implied by the second term of (8),

a
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Appendix 2-C Coulomb and Exchange Integrals

In §2.4 we indicated that

Jiszijz().

These relationships are derived below

(a) Jij = 0.

The Coulomb integral is

j = Jar or ;) fdr, o ¢ @ ¢; @)

12

)
i

¢; (1) 9, Q) ¢>]f" (2) ¢;(2)

r,

fd‘rld'r2

Since the integrand is positive for all values of r, and r,, the integral

must be positive. This integral is also denoted as
* *
Ty = [of 03105 91,

where the orbitals on the left are for electron 1 and those on the right

are for electron 2.

(b) Kij = 0.

The exchange integral is

K.

j = Jarol Mo, [dr, 5 o] @) ¢, @)

[o] ;107 ;1 .

To prove that Kij =z 0 we set
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[}

Qbi gi + i"7j_

¢y = & + Iy

where £, 7, gj , and 7 are real. This substitution leads to
Ky; = {50 - i) + i, 0} {@ + i@ H @) - in,@)}]
= [ §1‘§] NRURY + i(iiﬂj - ni£1)|£i€j + 77i77j - i(giﬂj - 77153)] .
We now define the charge distributions p, and p, as

Py = gl‘f] + ﬂin]'

i

P2 ‘éinj - 7715]' .

This leads to

K. =[p, + ipzlpl - ip, ]

1]
= [P1 ‘P1] + 1{[p2|p1 - [Pllpz]} ‘*‘[lepz s
ﬂ""_’/ N - b e
=0 =0 =0
and hence
Kij =0
(c) Jij = Kij .
To show that J ij = Kij we consider the wavefunction
\11(1,2) = qbl(tb] - ¢]¢1 7 (1)

The electron-electron interaction energy for this state is

(wl%!m) = [[dr a5, +— lw(l 2)|* >
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since the integrand is positive everywhere. Substituting the wavefunction
(1) leads to

(¥llw) = 20y -1y (2)

and hence

Expression (2) provides the physical significance of KIJ It is the change

in electron repulsion energy upon superimposing both products of orthogonal
orbitals ¢;¢;. That is, the wavefunctions -\-/—_;—[qbiqu + ¢;9,] lead to Coulomb
repulsion energies of

Jij + Kij .
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Appendix 2-D., Two-Electron Integrals for H,

2-D.1 The Coulomb integral, J

fr
The Coulomb integral, J or has the form
1
Tor = (X XM 5= 1%, @) x,,@)) (1)

= Jar, [f dr, x3(1) x,z(l)—r%;] X;@ x,@)

where x 9 and x, are 1s atomic orbitals centered on the left and
right protons. Letting
1
JQ(Z) = del X;(l) X‘Q(l)—f;; ’ (2)
we have

Tgp = Jd727,(2) x}@) @) . 3)

In the remainder of this section we will assume X and Xp are real.
Trirst we evaluate J ) by expanding —1;1——- as
12

© k k
_f]___ _ E Z (k‘lmi)'r<k . Pk[ml
12 k=0m=-k (k+|m|)1rd*

(the Laplace expansion) where r,, is the distance between the points

with spherical coordinates (1, 8,, @) and (r,, 6,,9,) .

Note that both r, and r, are with respect to the left-hand center.

(cos8,) PLI(m ; (cos@,) eim(gol- ?2)

4)
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Since ¥ ¢ is spherically symmetric (about center () the integrals over

8, and ¢, will be nonzero only whenk =m =0

o0

2 1
J, = 4 fcrgldralxﬂ(ral)-;: : (5)

-

Breaking the interval of integration to remove the ry, yields,

r
a2 o
1 2
Tg@ = 5 4r é X7 @a1)Ta1 9%p1 + [ X @aq)Ta1 %00 drs1 | (6)
Ta2
Letting
3 -{r 1
xg) =~/ e 3 (7)
we find
-2¢r | -
1
T ) (Ty9) = s [1 e 22y Craz)J : (8)

Now we must change to elliptic coordinates in order to evaluate the
integral over the coordinates of electron 2.

Using elliptical coordinates ¢ and 7 (see Appendix 2-A)

£ = (ry + rb)/R
' L r
n = (r, - r,)/R b
. a R b
dr = 2 (¢ - n)dgdnae

in (8) and (3), we find
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2

pe 1%
Tpe = - Jdo [dn faz {(gz—vﬁ e ER(E
0 -1 1
1 -ER(
X ) [l-e S (§+77)(1+—g—R(§+77):1}

CR [an fage-n) [E-CR(g‘n)'e-ZCRg(l+%R(€+m)] "’

I

or

1 o
3p2 i
fr _§_2R I dni[dg(g-n)e-CR(g n)

-1

3492 1 © ’
+ £ [an fde@-n e ®RE (10)
-1 1

1 (-]
4193
LR [anfag@®- g e RE

=1 1

-+

Evaluating these elementary integrals gives the following result

R 2¢R(1 11 3 1,2
ler"ctf'ﬁ"e (‘E‘ﬁ‘*"“g'*?rCR*"é‘CRZ)J a1)

Problem: Evaluate {x,(1)x ,(1) I_I}l.; [ %,@) x ()
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2-D.2 The Exchange Integral K or

Now we: evaluate the exchange integral

1
Kor = 0@ %@ 51,00 % @) = [xgx, gx, - (12)
Again we can define a quantity

1) = [dr,[x,(1) x (1) — ] (13)

involving integration over the first electron. Unfortunately the

Laplace expansion of -fl— will now lead to an infinite sum because
12

X 2(1) xr(l) is not spherically symmetric.
Instead we expand -}1— in terms of elliptical coordinates

12

using the Neuman expansion,
2

1 -2 3 2 )™ ek+1) W
T R k-0 m=-k &+ |m|)
(14)

|m| |m| |m| |m|

X Py [§<] Qg [§>] Py (n,) Py (15) eim((pl-cpz)

m
Qlk ‘ are the associated Legendre functions of the second kind.

m
where Pk are the associated Legendre functions and

Our function x 0 Xp is independent of @ so the only nonzero term

in the m summation is m=0.

To simplify the k summation we use the property

1
{ P, (n) P ()dn =0 if k # kK’

together with the facts that
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P,(n) = constant
and
P,(n) = $(*-%

Thus since the volume element for integration is —Réi (gf - nf)dg1 dn,,do,,
we find that by integration with respect to n, the only nonzero terms
are for k =0 and k = 2.

We will now skip pages of tedious algebra to the result

(see, for example, J. C. Slater, Quantum Theory of Molecules and

Solids, Vol. I, pp 266-273 for the details).

It is first convenient to define

s = e R er+1c2RY
o= et R tr41PRY
1 1- et o e_t
C= [—F—adt- ——dt = 0.57722 (Euler's Constant)
V] 1
«© .
Ei(-x) = - [ .et__ dt (integral logarithm) .
X

With these definitions the result is

Kgr C{ -2CR 25 T R + 3C2R2+%C3R3) N

+ —@_[S (C+£n(§R)) +ot Ei(-4 £R) - 2S0 Ei (- ZCR)]}

or for small R
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Ky =—;—§[g_ -1e?R% (%%- +—785— ¢n4) §4R4] + (higher order terms).

Note also for small R that if we include terms through R?,
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APPENDIX 2-E. DETAILED ANALYSIS OF THE EXCHANGE TERMS

In this section we will provide more detailed analysis of the

classical and exchange terms for H, discussed in §2.2 and §2.3.

2-E.1 The Potential Energy Terms

Just as with the total energy (see §2.2.1) the potential

energy can be partitioned into classical and exchange  terms as

follows



VLQ + Vot 2v

& 2(1 + S)

I
<
o
has)
+
<
e

where

i
[
)

)

>

+
<

4

=
~—

+

2-E-2

(1)

(2)

0
g‘ﬂ
o.
)
<
=
e ]
S’
©
o
fas )
—
-
S’
+

Ty = Vor =SV
(0! is given in 2.3-3). Similarly

_ wc! X
Vu—V +Vu

@

(4)
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where

VX, - v ) i (5)

First we examine the form of V°£. Substituting (2.1-4) leads to

1

ck 1 1
<Xp == =~ =— | X2 + &
2| r, rb|2+R

<
1l

<xﬁl-%—;’x£> + <x2|—%{— - rl—blxﬁ> '+ (6)

The first term is just the potential energy of an isolated hydrogen atom.
The second term is the net Coulomb interaction between a proton
(on the right) and a hydrogen atom (on the left). As shown in App. A

[ean. (25)]

£

avet = <x£ |11§- - T'l,; IX1>= (1+%)e"2R

and hence

L

ve*r - 14 (1+%)e'2R M

Consequently in the simple classical description (superposition of atomic

densities), there is no bonding of H: [This classical description is

equivalent to bringing up a proton to a hydrogen atom without allowing any
changes in the wavefunction of the hydrogen atom. ] The other terms in the
potential energy arise from interference effects. That is, they occur

because we superimpose amplitudes rather than densities.
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The total electron density for the g state is

Xg Xg * Xp Xp *+ 2 X Xy
p =
g 2(1 +8) ’

which can be partitioned into classical and exchange parts as

cl X
_ 8
Pg =P  +Pg (8)
where pcg is given in (2.3-3) and
ct
X [Xﬂ Xp = Sp ] .
po = (9)
g 1 +8)
Since
fdrp =1
and
depc,Q - 1

the integral of pX must be zero

fd'rpx=0 . (10)

That is, pX merely shifts density around with no net contribution to the

total electron charge. As a result we can determine the sign of
Vg = [drv(r)pg(r) (1)

from Fig. 2-8. Here we see that p;‘ > 0 near the bond midpoint



while p’g‘ < 0 near the nuclei; that is, p’g‘ leads to a shift of charge from
the nuclear region to the bond region. Since v( r) is much more
negative near the nuclei than near the bond midpoint, this shift of charge
into the bond region leads to a positive value for Vg(R) as shown in

Fig. 36,

EXERCISE:

ce

(@) Evaluate p’g‘ and p°~ at the bond midpoint for R = 2.5 a, .

[Answer: pé‘(%} _ 0. 1(:33 oot (B) - 0. 286]

cyt

(b) Evaluate pg and p°* at the left nucleus.

. X _ -0.10
[Answer: Py 0) = -

and p*f(0) = 207,
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1

L l | J | J | ! |

— , LCAO

@)

20 40 6.0 8.0
INTERNUCLEAR DISTANCE (BOHR)

Figure2-36. The classical and exchange potential energies

for the LCAO wavefunction of mw .

10.0



2-E,2 The Kinetic Energy Terms

The kinetic energy of the ¢_ state can be written as

t

T - M+trr+2tgr
€ 2(1 + 8)
_ fetter
1+8
where
tgp = <Xg [t[xg>
= tI‘I‘ ’
t,Qr = <x£|t}xr>
We will write
cl X
Tg: T + T,
where
ct
T =2 (g + o) = tyy
ck
g
1+8S
_ Tt
1+8

(12)

(13)

(14)

(15)

(16)

2-E-T
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Similarly T = T°¢ + TX ; where

t,..-ST T
TS = - AE = -t (17
1-8 1-8
Since TCQ is just the atomic value of the kinetic energy (independent of.R),

the changes in T responsible for bonding must all be contained in T,

X
g
responsible for the bond in HY

Thus the plots of T _ and Tu in Fig. 12 are actually plots of T and Tﬁ .

g

The large negative value of Tg

results from the large negative value of Ty- We will now examine why

7 is large and negative. From Appendix 1-A we know that

g = ~Hxg [V = (VX" VX

*
= -;-f dr(¥xg): VX ; (18)
»
and 2
trr = 3 < |ert >
Thus Ty = t!r-%S(tM+trr) (19)

R

=4 [ {vxg - Vx - 5 [(Fx)" + (Vx)']}  20)

In order to understand the significance of the terms in (20), we will

consider first the case  where T is modified by replacing
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VXg* VX in (20) by |[Vxy| |Vx.|.  This leads to
an integrand of the-form

Vx| [y | - % [(Vx)* +(vx.)*] - (21)

-Tr
Since Xg = © 4 - we obtain
VXg = 'Xﬁ.ér

(where & is a unit vector in the r direction) and hence (21) becomes
‘ 2 2
[ X, Xg =% (xg + x)]

However the term in brackets is just proportional to px in (9) and hence

from (10) the resulting integral is zero. Thus it is the difference between
the dot product term

X . vX
VQ V‘r

‘in (20) and the absolute value term
9% | [V, ]
in (21) that is responsible for the large negative value of T4 and hence of the

chemical bond. To emphasize this we define a function called the

contragradience
Cx) = [VX| |VX, |- VX - VX, (2.3-7)
such that
7.=-3/d1 Cx). (2.3-6)

Large contragradiences lead to a large negative Ty

As discussed in §2.3.3 and illustrated in Fig. 14, the largest values of

C(r) occur for points in between the nuclei.

and hence strong bonds.
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2-E.3 Specific Results for H

From App. A the explicit form of T for H;L is

Thus as expected, T, ™ 0as R— 0 and as R—«~. The minimum in 7, occurs
for R = 2. Thus we would expect the maximum bonding effect to occur
near R = 2a,. Indeed this is the optimum R of the exact wavefunction of

H:. Approximating the bond strength as

= - - Tt
g 1+5S
we obtain for R = 2 (where S = 0. 6)
—2 -
TX = 4 4e = —0¢12h
& (3)(1.6)
= 3.1eV

In fact the bond energy is only 0.1h = 2.5 eV,
and the Tg term does dominate the bonding. For
quantitative considerations we should, of course, use the total EX.

From Appendix A the explicit form of Ty for H; is
-R.1 2 1
TV = e [ﬁ - §R+ §R2] ’ (22)

neglecting terms of order e 2R. Combining with T4 leads to

-R 1 2 '
- - & 23
T=e | 3R] (23)
(neglecting terms of order e 2R), whereas

S = e'R[l +R + —;—Rz].
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Thus
T __.2 4.3 9 1
S ° "R ( B *'Eﬁ?r)’*o(iii)
and hence 71 = -_g_s
R (24)

Various energies for H; are tabulated in Table I.

Table 2-1. Energy quantities for the LCAO wavefunctions of the g state of H,". All
guantities are in atomic units.

R S AVc!& vX AVtotal : TX= ATtotal AEtotal

w 0.0% 0.0 0.0% 0.0? 0.0
10.0  0.00201  0.00000 0.00121 0. 00121 -0. 00151 -0. 00030
8.0  0.01018  0.00000 0.00536 0. 00536 -0. 00708 -0.00173
6.0  0.04710  0.00001 0.01933 0.01934 -0. 02841 -0.00907
5.0  0.09658  0.00005 0.03195 0. 03200 -0.05120 -0.01920
4.0  0.18926  0.00042  0.04485 0. 04527 -0.08214 -0.03687
3.5  0.25919  0.00117  0.04858 0. 04575 -0.09792 ~0. 04817
3.0  0.34851  0.00331  0.04837 0.05168 -0.11076 -0.059%08
2.5  0.45831  0.00943 0. 04301 0. 05244 -0.11727 -0. 06483
2.0  0.58645  0.02747  0.03250  0.05997 -0.11374 -0. 05377
‘1.5  0.72517  0.08298  0.01901 0.10199 -0. 08700 +0. 00499
1.0  0.85839 0.27067  0.00695  0.27762 -0. 06599 0. 21163
0.5  0.96034 1.10364  0.00080  1.10443 -0.02578 1. 07865

A The values at R = « are Vel=-1.0, viORl__1 o, Ttotal_o 5 gtotal_q 5,
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Summagg

The energy ¢, of any approximate wavefunction ¢, is an upper bound on

the exact energy of the ground state E ,

€ = E,, (3.1-3)

leading to the variational condition: If an approximate wavefunction (and hence
the energy) is a function of some parameter ), then the optimum wavefunction

satisfies the (necessary) condition

de. _ o, (3.1-4)
e

Expanding the unknown wavefunction ¢ in terms of a basis

b = El C,x, (3.1-6)
u:

and applying the variational condition leads to a set of matrix equations,
HC = ESC (3.1-25)

for obtaining the optimum coefficients (i.e., wavefunction).
More exact wavefunctions of H.: are considered in §3.2, but in § 3.3 we

find that the description of bonding in terms of exchange energies is retained.

In § 3.5 we present an overview of three useful methods for wavefunctions:

(a) The Hartree Fock (HF) method is a generalization of the MO wavefunction

in which the wavefunction (ground state of a two-electron system) is taken as

a7¥(1,2) = 9(1) 92 (3.5-10)
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and the orbitals ¢ optimized by solving the differential equation

HIF ¢ - (h+ T =ed (3.5-20)
or the matrix equation

#iFc = esc. (3.5-18h)

These equations are nonlinear and must be solved iteratively.

(b) The generalized valence bond (GVB) method is a generalization of the VB

method with the wavefunction taken of the form
89VB(1,2) = ¢,(1) 9y(2) + dy(1) 6,(2) (3.5-22)
and the orbitals 4>a and qbb optimized. This leads to two matrix eguations
H'C, = ¢,8C,

(3.5-31)

analogous to the HF equations (3.5-18) and to two differential equations
analogous to (3.5-20).
(c) The configuration interaction (CI) method with the wavefunction taken of

the form

CI o
8“%(1,2) = R C,p X, (X, (2

For the ground state this wavefunction can always be written in terms of

natural orbitals {¥ N} as

CI _NE T T » _
8“1(1,2) = % T X, 0%,@ (3.5-53)

In §3.5.5 we find that the ground state of any two electron system is
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nodeless and symmetric
$(1,2) = $(2,1).

In §3.6 and § 3.7 we find that the HF wavefunction accounts for all but
about 1.1 eV of the energy for He and H, and that a CI wavefunction with five
NO's accounts for all but about 0.15 eV. The four correlating NO's for this
wavefunction all involve one nodal plane.

All these methods involve expansions in terms of basis sets. For He it
is possible to obtain highly accurate HF and GVB wavefunctions with only two

(s-like) basis functions |the double valence (DV) basis] and for H, similar

quality wavefunctions can be obtained with six basis functions (two s and one p

on each center), [the DVP or double valence plus polarization basis].
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Chapter 3. More Exact Wavefunctions for One- and Two-Electron Systems

In Chapter 2 we discussed approximate wavefunctions for H;

and for H,

XgXp * XpXg -

In this chapter we will consider some aspects of more exact wavefunctions
for these molecules and for the two-electron atom, He. Our emphasis will
be on qualitative ideas, explicit methods for solving for the wavefunctions
will not be developed until Ch120c.

In §3.1 we examine the variational principle and in § 3.5 we use this
principle to examine some of the useful methods for calculating wavefunctions:
Hartree-Fock (HF), generalized valence bond (GVB), and configuration
interaction (CI).

Accurate wavefunctions for H: , He, and H, are discussed in sections
§3.2, §3.6and §3.7, respectively. In § 3.3 we reexamine the nature of the

bond in H; and in § 3.7.2 we reexamine the bond in H,.
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§3.1 The Variational Principle

The wavefunction for the ground state of the hydrogen atom has the form
e~T and the wavefunction for the ground state of the harmonic oscillator is

2
e T,

However, there are very few interesting systems for which the Schrédinger
equation can be solved exactly. Even so there are general procedures allowing
one to obtain highly accurate (indeed arbitrarily accurate) wavefunctions.

The powerful tool needed is the variational principle which will be discussed
extensively in Ch120c. Here we will outline some of the key results of this
principle in order to clarify the qualitative discussions of Ch120a. These key
results are:

a. Upper bound theorem,

If i, and E are the exact ground state wavefunction and energy of a

system

ey, = Equ, (1)
and if ¢, is an approximate wavefunction with energy

RGN

o - ’ (2)
) (B |04)

then

EOBE. (3)

That is, the energy evaluated using any approximate wavefunction is an upper

bound in the exact energy of the ground state.
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b. Variational condition

Given an approximate wavefunction ¢A(r) depending upon some

parameter ),
e.g., ¢, =e

then the optimum value of ) for describing the system must satisfy the

necessary condition

20 _ o, 4
where
3
o - (¢, lelo)
(6,19,

Equation (4) is referred to as the variational condition.

c. Basis set expansions

Given a set of functions

{Xd(r)’ p=1,2,...P}, (5)
the optimum wavefunction of the form

P
¢ = uz_—?l Cu Xy (6)

satisfies the condition

2>)H C =EXS C (7Ta)
vy uvov y kv v’

or in matrix notation

HC - ESC, (7o)
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where
H, =&, l5ex,,)
(8)

Suv = <x“lxv> .

The set of functions (5) used for expansion of the unknown function ¢ is called

a basis set. The unknowns are the coefficients
iC i p=1,-..P} (9)
which are obtained by solving the matrix equations (7).

§3.1.1 Discussion Of Upper Bound Theorem

The upper bound theorem (3) is easy to derive. Consider that the exact

eigenstates {y;} of the Hamiltonian were known

with i = 0 as the ground state.
Since the set of functions { wi} is complete, we can expand any

approximate wavefunction ¢, as

b0 = 2 Cyyy - (11)

Of course, in a real problem we will not know the functions {wi} , and hence
we will not be able to calculate the {C;}. However, the analysis in this section

will serve to establish a relation between the approximate and exact solutions.
From (10) and (11)

1, = 513 C;ocy; = 2 CE v (12)

and the energy of the approximate wavefunction ¢, is



3.1-4

co = (8|l 05) = T2 ¢ By lyp) = ZIGI7E; . (13)

Assuming ¢, is normalized,

2

L= (0oloe) = Zcyelysluy) = Zileyl” (14)
Using (14) in (13) we obtain
€o - Eq = Zi7lc.*i|z (E; - E,) - (15)

Since Ei > E, and lCilz > 0, the right-hand side of (15) is necessarily

positive, and hence

‘or

o = E, . (16)

That is, the energy calculated for any wavefunction is never lower than

the exact energy for the ground state wavefunction.® Thus we say that

€, is anupper bound on E, .

>kIn deriving (16) weassumed that ¢, could be expanded in terms of
the eigenfunctions of . This requires that ¢, Satisfy the boundary
conditions for gC For example, if the boundary
conditions for the system described by (10) were such that all wave-
functions are anti-symmetric, then we could not allow ¢, to contain a

symmetric part.
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§3.1.2 Discussion of the Variational Principle

Since any approximate wavefunction must yeild an energy above the energy
of the exact (ground state) wavefunction, we have a useful criterion for improving
approximate wavefunctions. Namely, if you can find some change in the wave-
function that leads to a lower energy, then do it! And reject any changes that
increase the energy. Ultimately if we consider all possible changes in the
wavefunction, this procedure must yield the exact wavefunction. Normally we
lose patience before considering all changes in the wavefunction, and instead we
consider functions of certain restricted classes. Here our basic criterion for
approximating the wavefunction will be to select that function of our specific
restricted class leading to the lowest energy. If A is some variable parameter
for the restricted set of functions being considered, then the optimum wave-

function must satisfy

JE 0

o (1

since otherwise a lower energy could be obtained by changing A a bit, as

illustrated in Fig. 1.

X opt

Figure 3-1,
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This criterion for optimizing a wavefunction is called the variational
principle and forms the basis of all methods we will consider for
determining wavefunctions. It should be noted here that (17) is not
sufficient to guarantee a minimum with respect to variations in )
(this requires °E > 0) and even if a minimum is found it need not

3 AZ .
in general be the minimum leading to the lowest energy. Fortunately

for the types of problems we deal with, these potential difficulties can

usually be avoided.



§3.1.2a Parameter Optimization

Consider as an approximation to the ground state of the hydrogen

atom the function
2
¢, (@) = e” 2T (18)

where o is a parameter. To determine the value of @ minimizing

the energy, we first calculate the energy as a function of @,

2

- L 1600 /(00 100>

-5 - (8

E() = (¢ |- 3V

The optimum value of o is given by

dE@) _ , _ s .. [8 3
da -2 2 \7a
or
a . = 2 - 0.283
Opt - &T - . * o e
Substituting this into (19) we obtain
El@_,)=- — = -0.4244...
opt 3n

3.1-6

(recalling that the exact energy is E = -0.5). Thus, even though (18) is con-
siderably different from the exact eigenfunction for the ground state of the

hydrogen atom, by optimfzing a we are able to account for 84. 9% of the
energy.

Exercise. (a) Derive the energy expression (19).

(b) Consider .
-ar

ze
as an approximation to the 2p orbital of hydrogen atom.
Find the optimum «.
(¢) How would you proceed to obtain a corresponding

approximation to the 2s orbital of hydrogen atom ?
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§3.1.3 Basis Set Expansions

We will now use the variational principle to determine the best
representation of an approximate wavefunction as an expansion (6) in terms

of the functions of some finite basis set (5). The energy is

o (olrley N (20)

(o] o¢) D ’

where

N= 2 C*H C (21)
L,y N HY oV

2 C*S C (22)
L,V Lopv v

o
]

and H-u.v’ SLLV are given in (8). (We do not assume here that the basis functions
are orthonormal; they must of course be linearly independent.)

The energy (20) depends on the P parameters {Cu}, and thus from the

variational principle we require that
___...:O, fOI‘pL:l,Z,...,P.

From (20) this leads to

dE 1 dN N aD
“~ - 2
acu D BC‘u D oC

u
A2
and hence
%-E%:O. (23)
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Assuming that the basis functions {Xu} and coefficients {Cu} are all real, "

we obtain#

2 L};, (B, - ES,)C, | =0 (24)
and hence

ZVJHWCV = EZVJSWCV . (7)

In matrix notation (7) becomes
HC = ESC. (25)

If the basis functions are orthonormal

Suv = 6# L (26)
the variational condition (25) becomes
HC = EC. 27

Thus the variational principle leads to a finite matrix equation directly analogous
to the Schrodinger equation. Indeed if a complete set of basis functions is used,
the solution of (17) or (27) is the exact solution of the Schrédinger equation.'
Although the wavefunction and basis functions were written as one electron

functions, this procedure applies identically for many-electron wavefunctions.

*The more general case leads to the same equations.

#Note that if the basis functions are real then H =H and S =S
[T3% v pv v

L
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§ 3.2 Accurate Wavefunctions for H;

The LCAO wavefunction of H, discussed in § 2.2 is an approximate
wavefunction and does not provide a quantitatively accurate description of
H: near R,. Inthis section we will discuss more accurate wavefunctions of
H; . First we consider a useful intermediate level description, the MBS

wavefunction.

§3.2.1 Scaled LCAO Wavefunctions

We will describe the wavefunction of H;L in terms of linear combinations
of two orbitals, x 2 and x r? centered on each proton, but rather than atomic

orbitals we will use scaled atomic-like orbitals

X, = V& /) e STy
Xp = w/(Cs/n) e~ STy

The scaling parameter { is referred to as an orbital exponent. Use of £ = 1

(1)

leads back to the LCAO description of §2.2, {>1 leads to more contracted
orbitals, while {< 1 leads to more diffuse orbitals.

Using the basis set (1) the wavefunctions of H, have the form

0y = X+ X)/VET+5) (9)
0, = (=% + X)/ VAT -9 ’

just as in §2. 2. However the energies of these wavefunctions depend upon both
¢ and R (see App.2A for the specific dependence of the integrals on ¢).

At each R we will now use the { leading to the lowest energy. Since the
forms of Eg and Eu are different, the optimum ¢ will be different for the

g and u states, as shown in Fig.1.



OPTIMUM EXPONENT (A.U.)
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H2
u MBS
1.2 Cq
0.8
| 1 I L | | I | L
O'60 2.0 4.0 6.0 8.0 10.0
INTERNUCLEAR DISTANCE (BOHR)
Figure 3-1.  The optimum orbital exponents for the MBS descriptions

of the g and u states of Hz+.
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As shown in Fig. 2 and Table 1, the improvement in the energy for the g state
is quite remarkable, leading to energies close to the exact answer. For the
u state both the LCAO and MBS energies are quite close to the exact answer.

In discussing such wavefunctions we will use the following terminology
(a) LCAO denotes the use of a linear combination of atomic orbitals using

the orbital exponents of the atoms.

(b) MBS (minimal basis set) indicates the smallest set of atomic-like functions

that would describe the case of R = ». For finite R the orbital exponents will
generally be optimized. The results of MBS calculations will be discussed

further after a discussion of the exact wavefunctions of H; .

Table 3-1
Optimum Bond Length (R_) and Bond Strength (D) for the gstate of H,'.

All quantities in atomic units.

Relativistic®
Non-Relativistic Neglect Include
Nuclear Nuclear
Neglect Nuclear Kinetic Energy Kinetic Kinetic d
Energy Energy
LCAO? MBS? EXACT®  EXACTy EXACT y
R, 2.493 2.00 2.00379° 2.00376° 2.00562°
D, 0.06500 0.08651 0.10263_5_c 0.10264° 0.10178§c

a. Unpublished calculations, Wadt, Olafson and Goddard.

b. D. R. Bates, K. Ledsham, and A. L. Stewart, Phil. Trans. Roy. Soc.
A246 215 (1953).

c. S.K. Luke, G. Hunter, R. P. McFachran, and M. Cohen, JCP 50
1644 (1969).

d. G. Hunter and H. O. Pritchard, JCP 46 2153 (1967).
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(a)
0.05 \
| g STATE of H3
0 -
m -0.05+
g — ——LCAO (L=1.0)
|-— ““““““““ MBS (COPT)
L
>..
¢ -ols——— 11 1 1
S (b)
5 u STATE of H3
0.30
Ll
2 -
=
< 0.20-
W i ———LCAO (¢=1.0)
~—-=--=-=--MBS ({opT)
O.10F EXACT
0]
l | I | |

L | l l
¢ 2.0 4.0 6.0 8.0 10.0
INTERNUCLEAR DISTANCE (BOHR)

Figure 3-2  The LCAO (¢ = 1.0), MBS (optimum ¢), and exact energies for
the g and u states of H,'. Note that Fig. (b) does contain three

different lines. The vertical scale of (b) is twice that of (a).
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§3.2.2 The Exact Wavefunction for H,

Previously we considered approximate solutions

of the Schrddinger equation

X yR @) = E®)yg @), 3)

where the Hamiltonian is

2 1 1
X = -2V - — - —
z Ta  Tp

(4)

¥0|

-+

(see Fig. 2-1 for the coordinate system). Exact solutions to (3) have also
been obtained as will now be described.
From §3.1 we can obtain arbitrarily accurate wavefunctions for H,

by expanding the orbital in terms of a sufficiently general basis
s u=1,2,...Py,
{x 5 m h

p
o(r) =2 C x[r)
m=1

where the expansion coefficients are obtained by solving the P by P

matrix equation

with

Hy, = (x, [5x,)

(assuming the basis to be orthonormal). As the basis set is made more

complete (P — «) the wavefunction approaches the exact wavefunction.
Although the above procedure is practical, it is possible for H;f to

solve directly for the exact solutions. The procedure is examined in

Appendix D.
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§3.2.3 Comparison of Wavefunctions and Energies

The various wavefunctions of the g and u states are compared in
Fig. 3 for R = 2a,. For the g state we see that the shape of the LCAQ
wavefunction in the bond region is in good agreement with the exact wave-
function; however, the magnitude of the density in the bond region is ~ 25 to
30% low. The MRES description leads to reasonably good densities near the
nuclei but too low a density in the bond region. Thus with MBS the shape
of the wavefunction is not well described.

In the u state the LCAO wavefunction is in much better agreement with
the exact wavefunction than is the MBS wavefunction. I do not understand the
reason for this. In addition, I do not understand why the energies of these
wavefunctions are so similar (see Fig. 2b) despite the large differences in
the wavefunctions.

In Fig. 4 we compare the LCAC and MBS wavefunctions as a function
of R, finding that the LCAQ description does reasonably well for R>4a, .
Note the large difference in the behavior of the g and u states for small R.

These differences were also manifest in the optimum exponents of Fig. 1.
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functions for (a) the g state and (b) the u state of H,.
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§3.3 More on the Chemical Bond

In §2.2 and 2.3 we analyzed the bond of H} in terms of the LCAO
description. Now we will reexamine the bond using more accurate wavefunctions.

With more accurate wavefunctions we still find (§3.3.1) that the exchange
energy EX, (more specifically the exchange kinetic energy T= part of EY) is
responsible for the bonding or antibonding of the g and u states of HI: .

On the other hand, partitioning the energy into the total potential
energy (V) and the total kinetic energy (T), we find (§ 3.3.2) that neither can

be solely responsible for bonding.

§ 3.3.1 The Classical and Exchange Energies

Defining classical and exchange terms just as in §2.2,
E = EL EX (1)
B = (xp o b ) (2)
but using the MBS wavefunctions, we obtain the results of Fig. 5. Thus the
exchange eaqrgy dominates the bending just as for the LCAO wavefunction.
Partitioning the E into potential and kinetic parts, V> and T
EX= V¥4 TX (3)

as in Fig. 5, we see that TX favors bond formation while V= opposes it,
just as for the LCAO wavefunction.
Thus in terms of the classical and exchange quantities the LCAO and

MBS descriptions are quite similar. In both cases it is the large decrease in =

that is responsible for bond formation, Just as discussed in §2. 3, ™

is large and negative because the atomic orbitals are contragradient in the
region between the nuclei. In particular the T is similar in character for
the LCAO and MBS descriptions. With £>1 the gradients get larger and
favor a smaller R so that the differences in T for the LCAO and MBS

descriptions are easily understood.
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There is a flaw with this procedure of decomposing the
energy into classical and exchange parts. Adding a second basis function
on each center, say X, ¢ and X,,, and optimizing the coefficients (§3.1)
leads to

q)g =G (XI,Q + Xlr) + G (Xz;ﬂ + er)

and adding additional functions we ultimately obtain the exact wavefunction

in the form
. 0
b =24 Crliiey * Xgor). 4)
Thus we can define optimum left and right orbitals as
Xg = 24 GXge ©)

Xp = ?7;' CrX

and obtain an exchange energy for the exact wavefunction. The problem is

that for the exact wavefunction there is not a unique choice for the left
and right functions X I} and Xy As a result, there is some ambiguity in
the exchange energy for the exact wavefunction. On the other hand, with
optimized basis functions only a few functions (say, two s and one p, on each
center) lead to quite accurate descriptions but with no ambiguity in the

decomposition (5).

§3.3.2 Potential and Kinetic Energies

Rather than the partition (1) of the energy into classical and exchange
terms, it has been much more common to partition the energy into total
potential energy, V, and total kinetic energy, T,

E=T+V. (6)
I believe that this partitipn mixes up the things characteristic of bonding with

other quantities that are nearly independent of bonding with the result that neither
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quantity (T or V) consistently contains the bonding stuff. A good illustration
of this is to compare the quantities for the LCAO and MBS wavefunctions

of H2+. As shown in §3. 3.1 the classical and exchange energies behave
very similarly for these two cases. However as shown in Fig. 6 the
behavior of T and V for the MBS and LCAO wavefunctions is markedly
different. Thus for LCAO the T(R) is always lower than T(«) while

V(R) is always higher than V(~). This might suggest that it is kinetic
energy that is responsible for the bond. However for the MBS wavefunction
T(R) is below T(«x) only for R >2.7a,. Thus at Re = 2ag9, T(R) >T(x) and it
would be ludicrous to assert that theﬁé(;t:éc energy is the quantity dominating
bonding! On the other hand, in the MBS wavefunction,V(R) > V() for

R =3.52a,. Thus although V(R) dominates the bond at R, it opposes bond
formation for R > 3.5a,. Furthermore, for LCAO, V(R) opposes bonding
for all R.

Such difficulties have convinced me that (6) is not a useful partition of
the energy. The key indication of this is that although the total energy changes
monotonically from R =« to Re, the V and T for the MBS and exact wave-
functions are not monotonic, each dominating the energy over different regions.
Hence neither can be uniquely responsible for bonding.

Occasionally,* energy curves are analyzed by partitioning the V into
various parts

Vv = v v, vee (7)
where ee, en, and nn denote electron-electron repulsion, electron-nuclear
attraction, and nuclear-nuclear repulsion terms (ee is not present for Hz+).
As shown in Fig. Ta, each term is monotonic, with ven
decreasing with R. One might conclude from this that it is V" that is

responsible for bond formation. However as seen from Fig. Tb the

*Usually in the analysis of rotational and conformational barriers in

polyatomic molecules.



RELATIVE ENERGY (HARTREE)

0.2

|
o
N

|
o
H

o
o

o
»

o
o

3.3-5

g state and (c,d) the u state of H2+. All quantities

are relative to the value for R = «,

(a) (b)
i
i g STATE H3 \ g STATE H3
T v
N
~N o 7
- \\‘——__’/
i ————LCAO
---------- MBS
- EXACT
| { | 1 i | 1 i | 1 | L | { | 1 1 |
(c) (d)
\ u STATE Hj u STATE H}
B \ T v
- \ \
\
\
\
L NS ===
1 { 1 | ! 1 ] | l ! 1 | L I 1 1 { |
0 2.0 40 6.0 8.0 100 O 2.0 4,0 6.0 8.0 10.0
INTERNUCLEAR DISTANCE (BOHR)
Figure 3-6 The kinetic and total potential energies for (a,b) the



0.4
| @ - g STATE H3
V
0.2f|
- | v=yven4ynn
O k //,/" ~~~~~~~~~~~
7

m B \ / ven
W -0.2 \ ye
~E R

/
T -04r ©
> _
< -0.6
W 04 T
=
L | ®) \ u STATE Hj
Ll
=
‘__
<
I
w
a

| ]

| l ‘
4.0 6.0 8.0

|
0 20
INTERNUCLEAR DISTANCE (BOHR)
Figure 3-7. The total potential energy (V) and the partition into V™

(nuclear-nuclear energy) and ven (electron-nuclear energy)

for (a) the g state and (b) the u state of H] (exact wavefunctions).
All quantities are relative to the value for R = =,

3.3-6

10.0



3.3-7

v®™ and V™ are also monotonic for the u state and again VE™ decreases
with R, but this state is repulsive! Thus despite similar Vo™ and V*®
for g and u, we obtain radically different potential curves. My conclusion

is that V®" is dominated by quantities other than those responsible for

bond formation.
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§ 3.5 Overview of Theoretical Methods

In this course the plan is to cover the important qualitative ideas in
Ch120a and to examine the theoretical methods in detail in Ch120c. However,
familiarity with the theoretical methods is important for discussing

qualitative ideas and hence we will outline these methods.

§3.5.1 Basis Sets

Several methods involve solving for the optimum shape of one-electron
orbitals qbi(r). The general procedure for carrying out such calculations

involves selection of a basis set

{x,w=1,...7}, (1)

suitable for describing the optimum orbitals

P
¢4(r) = ,E'lc LX) (2)

Here the basis functions are fixed and hence selection of the optimum

coefficients
{Cli’ Czi, A b Cpi} (3)

serves to determine the orbital cbi(r). This procedure is analogous to a
Fourier expansion where harmonic functions (sines and cosines) are used
as basis functions in (1).

For an exact description of the optimum orbital it is generally
necessary to use an infinite number (a complete set) of basis functions,
however for practical reasons we must use a finite set. Indeed from

numerous studies of molecular wavefunctions there are principles that can
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be used to select rather small basis sets that yield quite accurate wave-

functions.

In evaluating the wavefunctions and energies using a basis set as in

(1), we must evaluate integrals of the form

(x, Inlx,) (4a)

1
X, @ %@ 5=x0) X, @), (4b)

where the functions may be centered at various regions of space. Thus
an important criterion in selecting the basis is that the molecular
integrals be practicable to evaluate. In order to obtain the best wave-
functions with the fewest basis functions, we want to choose the basis
functions to have shapes characteristic of the eigenstates of the
molecular systems.

For a Coulomb potential (i.e. the hydrogen atom), the eigenstates

have the form

1s: e 2T
X
2s: (r - a)e 2 Zr
3
2p,: T cos Ge 22T (5)

1
2pg: r sin & cos @ e 24T
. ) -1Zr
2py: r sin € sin p e 2
1
3s: (r - Br+ a)e 34T

etc.



3.5-3

(where normalization is ignored and the constants o« and $ are unimportant

to our considerations here), In order to describe with a finite number of

basis functions singular characteristics such as the cusps occurring near

the various nuclei, we should include in our basis set functions having

similar singular characteristics. Thus for a molecular system we should

use atomic functions like (5) centered upon the various nuclei of the molecule.
The radial parts of the functions in (5) all can be built from functions

of the form

et (6)

where various values of n and of the orbital exponent, {, must be allowed.

Functions of the form (6) are preferable to the hydrogen atom orbitals (5)
since (6) is more convenient for evaluating the molecular integrals.
Combining functions of the form (6) with appropriate angular functions

(Z,..., the real spherical Harmonics) leads to a convenient set of one-

fm
particle orbitals

ez, 0,0) (7)

for use in atomic and molecular wavefunctions. These functions (7)
are referred to as Slater functions# (or Slater-type orbitals, STO)

in honor of an early exponent™ of such functions. They are denoted

as 1s, 2s, 2p, etc. just as for hydrogen atom orbitals. The orbital
exponent , ¢, in (6) is considered as an adjustable parameter and is
generally chosen as the optimum value for the particular molecule and

basis set of interest [rather than taken as ¢ = Z/n as suggested by (5a)].

#We will use the term function when referring to an arbitrary function

as in a basis function and the term orbital when referring to a specific
optimized orbital as in a HF or GVB orbital.

*J. C. Slater, Phys. Rev., 36, 57 (1930).
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For example, a good basis for describing the wavefunction
for H, is to use two 1s Slater functions (denoted as 1s and 1s'), a 2s

Slater function, and a set of the 2p Slater functions (ZpZ, 2px’ and 2py)

on each center. The optimum exponents at R =1.4 a, are

¢(1s) = 0.965

e(ls") =1.43

¢(2s) =1.16 (8)
t(2pz) = 1.87

¢(2px) = ¢(2py) =1.71

(where the molecular axis is along z).

With this basis the CI wavefunction leads to an energy of -1.16696h
(at R =1.4a,), 99.4% of the exact answer™ -1,17447 h. Note that the
optimum orbital exponents are significantly different from the values

for the free atom

g = 1.0
¢ = 0.5
Cyp = 0.5

TA. D. Mclean, A. Weiss, and M. Yoshimine, Rev. Mod. Phys.,
32, 211 (1960).
*W. Kolos and L. Wolniewicz, JCP 41, 3663 (1964).
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The second type of basis functions commonly used in molecular
calculations are Gaussian functions where the e~ 5% of (7) is replaced

ar’

by e~ and n is taken as ¢,

- 2
rfe™® z, 6,9) (9)

Although Gaussian functions have the wrong behavior as r — 0 and as
r — o, they serve just as well as Slater functions in describing the
valence orbitals and the bonds of molecules. The major advantage of
Gaussian functions is that the molecular integrals (4) required for large
molecules are much simpler (and less time consuming) than for Slater
functions.

Generally the basis sets are optimized for the atoms. If properly
carried out, the atomic basis sets supplemented by a few additional
functions (polarization functions) serve to provide very accurate

descriptions of the molecular wavefunctions.

§3.5.2 The Hartree-Fock Method

§3.5.23 The Basic Equations

In §2.2 ° we described the simple MO wavefunction of H, in which

the two-electron wavefunction is expressed as

$(1,2) = ¢(1) 9(2) (10)
where ¢ is the MO

¢ = (xp+xp)/ V2T +9)

and x ) and Xp are hydrogen orbitals centered on the two nuclei. Now

we will consider the case where ¢ is allowed to be completely general.
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Thus if {xu} is some basis set, we write

p HUH
with the coefficients {Cu} chosen so that & in (10) leads to the lowest
possible energy.

The energy of (10) is

E = (a]|x®?2)/(s|8)
=z<¢lhl¢>+J¢¢+—é : (12)
where
T = (90]00) = [d'r, 67(1)0(1) fdsrzﬂﬁj—f—@— (13)
and
(¢lo) = 1. (14)

Applying the variational principle to (12)

with the constraint (14), leads to

<xu5 (h+3y-€) ¢y =0]" (15)
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where ¢ is referredto as the orbital energy,

= (¢[n[¢) + 74, (16)

and

Iy (r) = [ d'r, b (ry) $(r,) (17)

r12

is the electrostatic potential at point r; due to the charge density
|¢(r,)|? integrated over all r,.
Substituting (11) into (15) leads to

P
El (8, -€5,,)C, =0 p=1,2,...P. (182)
where
ur = X+ 3 X))
Sup = Oy lxy) . (19)
In matrix notation (18a) is written
HC = SCe . | (18b)

Since

1
O 131%,) = 2 E Co CplXy Xgl5=I%, X,
H“V is a function of the unknowns {Cu} and (18) is nonlinear. Since the
basis functions {Xu} are known, all integrals in (19) can be evaluated
just once so that (18) becomes a (nonlinear) algebraic equation.
In order for the variational condition (15) to be satisfied for all

XH of a complete set, the function
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(h+J¢-e‘)¢

must be zero. That is, the differential equation

(h+J¢)¢ =€¢) (20)
or (for H,)
12 1 1
-3V - }'; -;g +J¢)¢=€<b

must be satisfied in order that ¢ be a completely optimum function.

The resulting optimum wavefunction (10) is called the Hartree-Fock (HF)
wavefunction, the optimum orbital of (20) is called the Hartree-Fock
orbital, and this whole approach is called the Hartree-Fock method, all
in honor of the Englishman D. R, Hartree and the Russian V. Fock

(sometimes Fok) who first developed it.

§3.5.2b Solution of the Hartree-Fock Equations

The differential equation (20) is not linear in ¢ since J¢ depends
upon ¢. The usual approach to solving (20) is the iterative method in which

we guess the orbital, ¢,, evaluate J(p and solve the linear equation
(V]

(h+J¢o)d>1 =€p,

for a new orbital ¢,. Then ¢, is used to evaluate a new J & and
L

(h + J¢1) P, =€,

is solved for a new orbital ¢,. This process is continued until it converges,

that is, unfil d)I a1 ‘I’I .
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For atoms the HF equations (20) can be reduced to one-dimension
and solved numerically. However, for molecules the only practical
procedure is to use a finite basis set and to solve the resulting matrix
equations (18). These are also solved iteratively. One guesses the
coefficients {CZ} and evaluates the Huv of (19). With H’w fixed, the
matrix equations (18) are linear and easy to solve for a new set of
coefficients {C;L }. This process is continued until it converges.

By solving the matrix HF equation (18) for larger and larger basis
sets one can in the limit approach the results of solving the numerical
equations (20). Indeed by proper choice of the basis functions it is
possible to obtain very accurate solutions for very small P, e.g., P = 2

for He and P = 6 for H,,.

§3.5.2c Historical Note

Before real quantum mechanics (i.e., the work of Schrodinger,

Heisenberg, and their contemporaries in 1925, 1926), physicists (and
chemists) were attempting to understand the structure of atoms (and
molecules) on the basis of 2 many-electron Bohr atom. The idea was
that each electron moved along a different Bohr orbit, experiencing
electrostatic interactions due to all the other electrons but satisfying

various (postulated) rules in order to obtain agreement with the periodic

properties of the elements.
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Hartree in 1923 suggested™ approximating this problem by assuming
that the average interaction with the other electrons leads to a net potential
that is a function only of the distance from the nucleus. He then tried to
determine the form of V(r) [same V(r) for all orbitals] by fitting to the
experimental energies of the orbits of various electrons (e.g., from
X-ray data).

After quantum mechanics Hartree realized that he could convert
this idea into quantum mechanics and actually solve for the potential and
orbital. He thus started directly with (20) (and its generalization for more
electrons) and began solving for atomic wa.vefunctions.T These equations
are called the Hartree equations [Hartree, a properly modest English
gentleman, continued to call them the Self-Consistent Field (SCF) equations].

Slater in 1930 pointed out# that Hartree's equations could be derived
using the variational principle; thus putting Hartree's ad hoc approach
on a more fundamental basis. Slater also pointed out that for

many-electron atoms there are additional terms (we call them exchange

terms) that should be in the wavefunction (from the Pauli principle, see
Chapter 4), but Slater showed that these terms were of the same size as
the intrinsic (correlation) errors in the Hartree approach and did not

pursue them further.

*Proc. Camb. Phil. Soc. 21, 625 (1923).

TProe. Camb. Phil. Soc. 24, 89 (1927), outlined the mathematical techniques
and ibid., p. 111, reported Hartree wavefunctions for He (e, =0. 9172 h)

and approximate calculations for Rb.

#Phys. Rev. 35, 210 (1930).
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V. Fock™ in 1930 included the Pauli principle and derived the
corresponding variational equations obtaining Hartree's equations but with
additional exchange terms. These equations are now known as the

Hartree-Fock equations. (Hartree referred to them as SCF with exchange.)

The approach of using a finite basis set for obtaining HF wave-
functions (rather than solving numerically, a la Hartree) is sometimes
called HF Rocthaan in honor of the early leader in the development and

T We will make no such distinctions, although

application of this procedure.
Roothaan's paper is amazingly complete and Roothaan is rightfully
credited with the development of the basis set expansion (BSE) approach.
An early application of BSE was by C. A. Coulson [Proc. Camb. Phil.
Soc. 34, 204 (1938)] who concluded that BSE was not practical and that
SCF orbitals would not prove to be very useful for molecular structures.
Basically Coulson showed that the same effort required to obtain an
accurate HF wavefunction would, if applied to other forms of the wave-
function (with electron correlation), yield far better energies. The point
missed by Coulson is that for larger systems these other methods quickly
become much more cumbersome and expensive than HF. Roothaan's work
came at just the right time. Application of the BSE approach for larger

molecules depends upon electronic computers, the development of which

was just starting in 1951.

*7. Physik 61, 126 (1930).

fc. c. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951); G. C. Hall,
Proc. Roy, Soc. A205, 541 (1951).
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§3.5.2d Interpretation, Correlation and the Koopmans Theorem

The variational condition (20) has the form of a Schrédinger
equation for a particle moving in the potential

1 1
V=-0—-—+J
r, Ty o)

(assuming for the moment, H,).
This is just the classical potential that would be obtained if the second
electron were replaced by its classical potential, J o Thus the Hartree-
Fock orbital is the eigenstate of the motion of an electron in the
average potential due to the other electron. Indeed Hartree originally
derived his equations from just such classical considerations. In the
above derivation however, we applied the variational principle and
found that the best possible orbital satisfies such an equation.

Of course, in the real molecule the electron motions will be
such as to keep }11—2 as small as possible and é and i}t; as big as
possible, while also minimizing the kinetic energy. Thus at instants for

which one of the electrons happens to be close to the left nucleus, we expect

that the other electron will tend tobe near the right nucleus. Such instantaneous

correlations in the motion of the electrons are ignored in the Hartree-
Fock wavefunction. Both electrons move in the same orbital independently
of the instantaneous position of the other electron. Hence the error in
the Hartree-Fock wavefunction is called the correlation error.

The energy € in (20) is called the orbital energy. From (186)

it has the value

m
]

(p|h|o) + T

= E, - E;
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where

E, = 2(¢|hlo) + Iy
is the energy of the two electron system with both electrons in ¢ while

E, = <¢!hl¢>

is the energy with only one electron in ¢.

Thus € is just the negative of the ionization potential. There are two

approximations here. One is using the Hartree-Fock energy for the
two-electron molecule, leading to too high an energy for the two-electron
system. The other error is in describing the ion with the optimum orbital
¢ found for the twd-electron molecule, leading to too large an energy for
the ion. These errors often tend to cancel yielding ionization potentials
within ~10% of the exact value. This approximationin of using the orbital
energy to approximate the ionization potential is often called the Koopmans
theorem. ™ Although not strictly the theorem that Koopmans proved

[T. Koopmans, Physica, 1, 104 (1933)];1 we will also refer to this
approximation as Koopmans Theorem.t

*Note that there is an s at the end of this name and that the Dutch oo
sounds about like our long o.

TShortly after this work Koopmans switched to economics. He is on the
Economics faéulty at Yale and in 1975 won a Nobel priZe for his work in
optimization theory in economics.

IThe first application of this approximation was by D. R. Hartree,

Proc. Camb. Phil. Soc. 24, 111 (1927).
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§3.5.3 The Generalized Valence Bond Method

In §2.3 we described the simple VB wavefunction of H, in which

the two-electron wavefunction is expressed as:

@(132) = (Xﬂxr + erﬂ) ’ (21)

where x 0 and Xp are atomic orbitals.

We will now consider wavefunctions of the VB form (21)

8(1,2) = ¢, 0, + b5, @

but where the orbitals <¢>a and qbb are allowed to be completely general.
To obtain the best such orbitals we will apply the variational principle,
requiring the orbitals to lead to the lowest possible energy. The optimum
orbitals are called the generalized valence bond orbitals and the resulting

wavefunction is called the generalized valence bond (GVB) wavefunction.

§3.5.3a The Basic Equations

The energy of the GVB wavefunction (22) is

E=§+% (23)
where
N =[(alh|a) + (blh[b) + T, ]+[2(alh[b) Sy + Kyy] (24)
D=1+S,
S, = (alb).

Here and in most of the following we will use orbital subscripts (e.g.,
a and b) to dencte orbitals (e.g., qba and Dy respectively). Just as in

§3.5.2 we will consider that ¢, and ¢, are expanded in a basis {Xu}



and require that

condition (27a) leads to
a -
X, @ -e)lo) =0,
where

€, =E - (o||b)

and H? is an operator taking care of all other terms.”

expand ¢ a with (26) leading to

L x| @ - e)xpC =0,
1%

* The form of H? is

a
H =(h+Jb+Kb)+th+th--EPb

3.5-15

(26)

(27a)

(27b)

(28)

(29)

To solve (28) we

(30)

where Pba |b> (b] is a projection operator. However, the explicit form

is of no importance here.
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which in matrix notation is

a

HC

)

=€ SC (31a)
a ‘a2 %a

where the elements of the ;_Ia and S matrices are
a _ a
H = (xH [x)

= Xl 0+ T+ K)[x) + x Iy ollx,) +

(32)
xynlpy mx) - Eox b ®ix)
and
S, Xl
For the HF wavefunction the corresponding matrix is
HF _
H, = (x, [0+ 30X (33)

The presence of the second (exchange) term in the wavefunction (22)

leads to the other terms in (32). Of these additional terms only the Ky

term would be present if the orbitals d)a and gbb were orthogonal.
Equation (31a) is the condition for orbital <;ba to be optimum,

there is a similar equation

b~ _
I_I gb - €b§9b (31b)

to solve for the optimum orbital qf)b Thus in the GVB method we must
solve self-consistently for twoorbitals whereas in the HF method we
have just one orbital and hence one equation to sélve. Otherwise both
involve similar computational procedures.

As shown in Fig. 8, the GVB orbital of H, corresponds closély to the
VB orbital. |
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§3.5.3b Interpretation

If (28) is satisfied for all basis functions Xy, of a complete

set, then c,ba satisfies the differential equation,

a
H'9, = €0, . (34)
The H? in (34) can be written as
a

where Vb contains all the terms depending upon orbital ¢b We can con-
sider Vb as the average potential* seen by the electron in ¢ q due to the
electron in ¢b. The average potential is not just the Coulomb potential Jb
due to the electron on qbb (as would be expected classically), but also con-
tains other terms arising from the quantum mechanical form of the wave-
function. However, these additional terms are not chosen arbitrarily and
indeed were determined through the variational principle as the terms
required in order that qsa be the optimum orbital to place in the two-electron
wavefunction. Thus we can consider the potential Vb as the quantum
mechanical generalization of the classical Coulomb term for the
interaction between electrons in overlapping orbitals ¢ a and qbb.

The operator, Ha, in (35) is equivalent to the Hamiltonian
for an electron moving in the potential due to the nuclei (contained in h)
plus a potential V. due to the electron in orbital ¢b Since orbital
gba is an eigenfunction of Ha, we can interpret ¢a as the eigenstate of
an electron moving in the average potential (Vb) due to the other electron
of the system. Similarly, of course, we can interpret ¢b as the eigen-
state of an electron moving in the average potential \" a) due to the other

electron. Thus with this interpretation we can describe the two-electron

* P’

Note well that , is not a local potential (that is, a function of I)- Rather V;
contains integral operators and upon operating on ¢, , puts ¢, inside an integral.
Evensowe canconsider Vy as the effective potential due to ¢}, as seenby ?,.
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system in terms of two one-electron systems each of which contains
the average potential due to the other electron. Such a description
of a multi-electron system in terms of electrons moving independently

of each other will be termed an independent particle interpretation (IPI).

We will find, especially for larger molecules, that such IPI's will be
very useful in understanding the wavefunctions.

It is important to note here that the IPI comes about from the
one-particle Schroedinger equation, such as (34), arising from applica-
tion of the variational principle to a special type of wavefunction(22). The real
electrons ofa molecule are quite indistinguishable, and we do not imply that one
of the electrons moves in one orbital (say cba) while the other electron
moves in the other orbital (qbb). What we say is that the orbitals satisfy
a one-electron Schroedinger equation for which the field term is the
average potential of an electron in the other orbital. This is not the
equation describing the motion of one of the real electrons. However,
considering the eigenstates of two fictitious, distinguishable electrons,
we do obtain the optimum orbitals for the many-electron wavefunction (22).

It is really the orbitals which are distinguishable here, not the electrons.

§3.5.3c GVB Natural Orbitals

In order to obtain another view of the GVB wavefunction we will define

the GVB natural orbitals™ ¢ g and ¢, as the sum and difference of the GVB

orbitals 4’1 and ¢ r
bg = (9g+ ¢,)/D,

(36)
¢u = (¢I‘ - ¢ﬂ)/Du s

where
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Dg =v2(1 + S) (37)
D, =v2(1 - §)

and S is the overlap of the GVB orbitals

S=(9,[0,) .
R‘eéfranging (36) leads to

2¢, = Dg®g + DyPy
2 (bﬁ = Dg¢g - Du¢u

and hence the total wavefunction becomes
2 2
@=0pbp + .0, = [Dg 0g8g = Dyby9y1/2,

T hus we may view the GVB wavefunction in terms of ¢£ and ¢>r where there
is always one electron in 4:1 and one in qbr or one may view this wavefunction
in terms of GVB natural orbitals qbg and cI)u where part of the time both
electrons are in ¢g and part of the time both are in ¢, . Here ¢g resembles
the bonding orbital and ¢u the antibonding orbital. The equivalence of these
two descriptions may be clear in Figure 9, where Figure 9d and Figure 9g
are equivalent. The first natural orbital qbg has a good kinetic energy but a
bad two-electron energy. Mixing in a small amount of ¢ , causes an increase
in the kinetic energy, but this is more than compensated by the decrease in
the electron-repulsion energy, leading to the optimum wavefunction Fig. 9d

or g.
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Requiring that the total wavefunction be normalized leads to

B= (0,0, + 6,0 A2l + )

= Cg¢g¢g - Cu%42, (38)
where from (37),

C D’ -
s ) (39)
Cq Dg (1 +9)

Thatis, if the overlap between the two orbitals is nearly zero (H, for
R — =), then the two configurations come in with nearly equal coefficients.

On the other hand, for H, at R = 1.4 a, S = 0.8 and hence

Cu

g

=0.11

| =

*In this section we use g and u for the orbitals as appropriate for H,. However,
the discussion does not depend upon inversion symmetry and all results apply
also to a GVB pair for an unsymmetric system.
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§3.5.4 Electron Correlation

In a real atom the electrons are expected to move somewhat in concert
so that they avoid getting too close to each other while remaining close to the
nucleus. That is, their motions are somewhat correlated. On the other
hand, in the HF wav=functien, ¢(1) ¢(2), each electron is placed in the same
orbital and hence the probability of either electron being at a particular
position is independent of where the other electron is. That is, the electrons
in the HF orbital are uncorrelated in their motions. For this reason the
difference between the HF energy and the exact energy is called the

correlation error. For the ground states of two-electron atoms (H™, He,

Li+, etc.) the correlation error is about 1.1 eV. In addition, for H, (at Re)

the correlation error is 1.1 eV. Although this correlation energy is small
compared to the total energy of these systems (e.g., 1.5% for He), it is
comparable to many quantites of interest.

In the GVB wavefunction for H,

P,(1) ¢.2) + ¢,.(1) ¢,2), (40)

one electron is in qbﬂ while the other electron is in d)r regardless of which
electron is in which. Hence, there is static correlation in the sense that
the orbitals for each electron are in a slightly different region of space,

and hence on the average the electrons stay farther apart. However, the
presence of electron 1 at a particular location of the (’b!Z orbital does not
affect the probability of electron 2 being at any particular position in orbital
qbr, and hence we may consider that the GVB wavefunction does not provide

for instantaneous correlations among the motions of the electrons. Since the
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GVB wavefunction is the most general wavefunction involving just two spatial
orbitals, we may consider that all correlation error beyond GVB involves
instantaneous correlation of the electrons. When important to distinguish

these effects we will refer to the latter as dynamic electron correlations and

the difference between HF and GVB as static electron correlation.

Now consider the description of correlation in the natural orbital (NO)

representation of the GVB wavefunction
aN0,. = C_ ¢ (1) 6.(2) - C, ¢(1) 6_(2) (41)
(1,2) ~ ~g g g u’u LA

Assume that electron 1 is at some position R on the right side of the molecule
and consider the likelihood of electron 2 being at equivalent positions R or L

on the right and left sides of the molecule. Inthe HF wavefunction

HF®,R) - 6R) 6
1F®,L) = o®) o),
and since
S(R) = ¢(L),
we have equal probabilities
T ®,B)|° = [¢HF R, 1)[" (42)

of the electrons being on the same or opposite sides.

In the GVB wavefunction (40) we find

&%VB R, R)

]

0 ®) 6. (R) + ¢, (R) ¢, (R)

e°VB®R,L) = ¢, (R) ¢, (L) + ¢, (R) 9, (L) ,



3.5-23

and hence
eCVB (R R) < eCVB R, 1) , (43)

that is, we obtain the static correlation referred to above. Using the NO

form of the wavetunction we obtain
sNO[R,R) = C_¢_(R) ¢_(R) - C. ¢ (R) ¢ _(R)
’ g'g g u‘u u

NO
¢"OR,L) = Cy 9, () 0, (L) - C, ¢, (R) ¢, (L)

Cq $g(R) 9, (R) + C, &, (R) &, (R)
(using the symmetries of ¢ g and qbu) and hence

O R, R) < oNO (R, 1). (44)

Just as in (43). Comparing (41) with the HF wavefunction
517 (1,2) = 0,(1) 9,(2) (45)

we see that in order to obtain effective electron correlation, the second NO

must have a shape similar to that of the first (dominant) NO but with an extra

nodal plane bisecting the first NO. This allows maximal difference between

»NO (R,R) and N0 (R,L) and hence maximal electron correlation.
We will later find such arguments in terms of nodal planes to be useful in
describing other electron correlation effects.

The above discussion should be made clear in Fig. 9.
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§3.5.4a Jonization Potentials

In general we expect the correlation error to increase with the number
of electrons (since there are more and more complicated interrelationships
ignored). Thus the ionization potentials calculated from HF and GVB should
be too small. On the other hand we can get an approximate IP from
Koopmans' theorem. The Koopmans IP is the energy difference between
the self-consistent energy of the N-electron system, Exps and an energy of
the N-1 electron system, Ey-1, Obtained using orbitals from the N-electron
wavefunction. Thus the description of the ionic (N-1 electron) state is non-
optimum leading to too high a value for EN-I and hence too large a prediction
of IP. However, the IP calculated using selfconsistent wavefunctions of the
N and N-1 electron systems should be too small. Hence there is a cancelling
of errors such that the Koopmans theorem value of IP is usually rather good

(within ~10%). These effects are indicated in Fig. 10.

Exact HF Koopmans
Theorem
. R
N-1 electrons{ ———
I.P. exact 1.P. HF IPKT

N electrons{

Figure 3-10,
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§3.5.5 Configuration Interaction Wavefunctions

Starting with a one-electron basis

- u=1,2...P
{xu,u }

we can construct a two-electron basis

{Xu(l) Xv(z); u,v =1,2,.. 'P}

by combining all products of one-electron functions. Interms of this basis

the most general wavefunction is

P
2 = ?_1 Cp x,(Mx, (. (45)

The terms in (46) are called configurations and the resulting wavefunction is
called an configuration interaction (CI) wavefunction.
Applying the variational principle §3.1, the optimum coefficients for

(46) are solutions of equations

Y H=

| -E)C =0 (47)
uv
uv

on, uwv
analogous to (3.1-7) except that each simple index ; or v is replaced by a
combined index on or pv. For a complete basis (P = «) the resulting CI

wavefunction is the exact wavefunction of the system.
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§3.5.5a Permutational Symmetry

Because the electrons are identical the Hamiltonian must be

invariant (unchanged) upon permutation (interchange) of the electrons

3(2,1) =3¢(1,2). (48)

1.]

12

As a result of this permutatibnal symmetry the exact eigenstates of 3¢ can

[Recall that 3¢(1,2) = h(1) + h(2) +

always be taken as either symmetric

¥5(2,1) = ¥5(1,2) (49)
or antisymmetric

¥9(2,1) = -94(1,2) (50)

under permutation.

The proof (see App. A) is quite analogous to that in §2.1 where we found that

for a system with inversion symmetry, all eigenfunctions are either g or u.
Later when we discuss the Pauli principle and spin we will find that

symmetric spatial wavefunctions ¥° are allowed only for singlet (S = 0)

spin states and antisymmetric spatial wavefunctions ¥? are allowed only

for triplet (S = 1) spin states.

§3.5.5b The Nodal Theorem

Next we will show that the lowest state of 3¢(1, 2) [assuming 3¢ is
symmetric (48)] is always a symmetric wavefunction, ¥5(1,2), (49).

As snown in §1.2 the ground state of a system is nodeless, that is,
the wavefunction of the ground state has the same sign everywhere. For

a one-electron system this means that
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AN
N

cannot be the ground state* whereas

can.

The nodal theorem applies also for many electron systems, such as

3(1,2) = -3V, - 3V, + v(r) + v(r,) + = (51)
12

(the proof is exactly as in §1.2). We will now use the nodal theorem to show
that the ground state of any two-electron system must be a symmetric wave-
function.

Letting r, = r, in an antisymmetric wavefunction

v(r,1) = -¢1,1)
leads to
311 = W)
and hence
yHr,1,) =0, if 1 =71,. (52)

* except for R = o, where this state is degenerate with the nodeless state.
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[ For example, typical one-dimensional cases are illustrated in Fig. 11. ]
Thus every antisymmetric function has a nodal plane whereas symmetric
functions need not have nodal planes. Since the nodal theorem implies that
the ground state is nodeless, then the ground state must be permutationably
symmetric, (49). Later we will find that a symmetric spatial wavefunction
must correspond to a singlet spin state and hence the ground state of a two-
electron system must be a singlet state.

In the case of a sufficiently singular potential it is possible for the
lowest wavefunction having a node to be as low as the lowest nodeless wave-
function. However, in three dimensions our Hamiltonian (51) is not this

singular and hence the inequalities apply.

a a g —y
Zl @ R f“\ Zl
s )
( (=i
‘e’
O 4 N 0 s
0 Zy a 0 Zy a
a) Antisymmetric Wavefunction b) Symmetric Wavefunction
(triplet state) (singlet state)

Figure 3-11. TIllustration of nodal patterns of two-electron systems
(in one dimension).
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§3.5.5¢c Natural Orbitals

In App. B we show that the CI wavefunction (46) for the ground state

of any two-electron system can be written as

°1,2) = Z) c X (1) X (2) (53)
=

(that is, double occupied orbitals only) where the orbitals {iu}, called

natural orbitals, are orthonormal
X, =5 . (54)

Since (53) has only P terms rather than P’ as in (46), it is obviously easier
to interpret.

The density of electrons in a two-electron system is defined as
p(1) = [ d&r, ¥(1,2)" ¥(1,2).
Thus using (53) leads to

p(1) = 22 TIT, X, ()7X,,(1) (x,@)]x,(@

sV Hov
=2 p |x ()F
L
where puz ICulz

Since there is a total of two electrons in the system
[ d’r,p(1) = 2,
the coefficients must sum to two,

2.0 = 2.
v P

Consequently, in terms of natural orbitals, the total density of the CI wave-
function is just the sum of the densities of the natural orbitals weighted by a

population pu that sums to two.
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§3.6 Wavefunctions for He

In this section we will illustrate the HF, GVB and CI methods by

describing the wavefunctions for He atom.

§3.6.1 HF Wavefunctions for He Atom

First we consider various approximations to the HF wavefunction
875(1,2) = o(1) 6(2),
where the HF orbital ¢ is expanded in a basis set.

§3.6.1a MBS

The simplest description of He atom is to place two electrons in the

1s orbital of He™

x = e °F (1)
where ¢ =2.0. The total energy in hartrees is just

E =2¢ +J=-2.75,
where

€, =-2.0
is the energy of He" and

J=2¢t=1.25,

is the Coulomb interaction of the two electrons (see App. C).
This description can be improved by optimizing ¢ (leading to the
MBS description). As shown in App. C the energy has the form
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E=¢ T, +tV,, (2)

where

T,=12)@) =1
V,=-2Z+ 3

(i.e., T, and V, are the kinetic and potential energies for the case of

¢ =1). Requiring that dE/o¢ =0, to obtain the optimum ¢, leads to

Copr =~ 27 =% % - (3)

= 1.6875.

for He. Since the optimum ¢ for the one-electron atom is

§=Z,

we can interpret the Copr 2S an effective charge that has decreased from Z
due to the presence of the second electron. It is as if the second

electron partially shields the nucleus; hence the quantity
5
16
is sometimes referred to as the shielding correction.
Substituting (3) into (2) leads to

2

_ VvV, _ A2 2
Eopr =~ 71, = * 5 SopT = ~SoPT (4)
= .2.84766 h .

This energy is the same as if there had been two non-interacting electrons

each experiencing the Coulomb field due to a nucleus of charge

5

Z—-l—é-.

SopT =
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The exact energy for He atom is
-2.9037
Thus the above simple wavefunction accounts for 98. 5% of the exact

energy! Since the correct energy of He™ is

-2.0,
the use of the calculated E of (4) leads to a predicted IP of 0.84766 or
949% of the exact value. Use of the Koopmans theorem leads to

-IP = (¢|h|¢> + J‘Pd’ = %C(Z)PT -Z COPT + %§OPT
=18 4> Cop = - 0. 89648
T 2°0PT " 16 °OPT ~ : ’

99, 2% of the experimental value (a better value is obtained because we

describe the ion badly).

§3.6.1b Bigger Basis Sets

The results of using various-sized basis sets for HF calculations
on He are listed in Table 2.- In the cases P =1, 2, and 3 extensive
optimization of the parameters was carried out, leading to quite short
expansions. Thus with P = 2 we are within 0.000007 h = 0.0002 eV =0. 005 kcal/mol
of the HF limit (P = =), With P = 3 the energy is cerrect to § decimal
| places (comparing to the HF limit). Bear in mind here that the exact
(nonrelativistic) energy for He is -2.903 so that even the exact HF
wavefunction is off by 0,042 h = 1.1 eV = 25 kcal/mol.
The HF orbitals in these various approximations are plotted in Figure 15,
Note that even though P = 3 and P = 12 lead to the same energy (to 6 decimal
places) there are still noticeable changes in the orbitals.
The conclusion here is that two suitably chosen basis functions are

adequate for describing He. Such a basis is referred to as double zeta (DZ)

or double valence (DV).



Table 3-2, Parameters for HF wavefunctions of the ground state of He. F is the total

energy,

€ is the orbital energy. The orbital exponents are shown in parentheses while the

expansion coefficients are not. All quantities are in Hartree atomic units.

1 22 32 12P
E -2.847656 -2.861673 -2.861680 -2.861680
€ -0.89648 -0.91792 -0.91795 -0.91796
ns(t) C, 1s(1.68750) 1.0 1s(1.453) 0.84289 1s(1.450) 1.36211 15(3.0) 0.45742
1s(2.906) 0.18159 2s(1.723) -0.28189 1s(1.4) 0.00000
25(2.641) -0.10724 25(3.0) 0.24427
2s(1.4) 0.12985
3s(3.0) 0.13657
3s(1.4) 0.11340
4s(3.0) 0.09451
4s(1.4) -0.08686
5s(3.0) 0.00819
5s(1.4) 0.02546
65(3.0) 0.02767
6s(1.4) -0.00267

ap. s. Bagus, T. L. Gilbert, H. D. Cohen, and C. C. J. Roothaan, unpublished, 1966.

PC. C. J. Roothaan, L. M. Sachs, and A. W. Weiss, Rev. Mod. Phys. 32, 186 (1960).

¥-9°¢
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Figure 3-12, Comparison of Hartree-Fock
wavefunctions for Helium using
various (optimum) basis sets.
p indicates the number of func-
tions in the basis set.
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§3.6.2 The GVB Wavefunctions for He

For He atom the GVB wavefunction is the optimum wavefunction of the

form
8CVB(1,2) = 0,(1) 6, (D) + op(1) 8,(2) (5)

The GVB orbitals of He are shown in Fig. 13, where they are compared
to the 1s orbital of He* and to the HF orbital of He. We see that OV 5
is very similar to the 1s orbital of He®, and that ¢CVE is much more diffuse.
Thus we envision He as having (i) one electron‘in the 1s orbital of He" (this is
orbital ¢ a) experiencing an effective nuclear charge of Z ~ 2 and (ii) the
second electron in an orbital (qbb) experiencing an effective charge of Z ~ 1
(nuclear charge of 2 but shielded by the b, electron).*

This type of correlation is referred to as in-out correlation since when
one electron is closer to the nucleus, the other tends to be farther away.

This GVB picture is somewhat different from the HF model where both

electrons are in the same orbital and one cannot relate the description so

simply to that of He™.

*Describing both q‘>a and ¢b as simple exponentials and optimizing the

exponents leads to effective charges of

1.189

%b
Ca

2.183

as expected from the simple picture. [J. N. Silverman, Q. Platas, and

F. A. Matson, J. Chem. Phys. 32, 1402 (1960).]
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A more extreme case is H™, the GVB orbitals for which are shown
in Fig. 14. Here the first electron (in ¢ a) is very similar to a hydrogen 1s
orbital and the second electron is barely bound, leading to a very diffuse qbb
orbital. As shown in Table 3, the HF wavefunction for H~ yields an energy
of -0.487, higher than the energy of the hydrogen atom (implying that H™ is
not stable with respect to H plus an electron). The second electron cannot
leave since the HF orbital is doubly occupied; thus either both electrons stay
or both leave. The GVB wavefunction yields an energy of -0.513, correctly
accounting for the stability of H™ (the exact energy is -0.527).

§3.6.3 CI Wavefunctions for He

The results of several CI calculations on He are shown in Table 4.
Analyzing in terms of natural orbitals leads to the results in Table 5.
Here we see that the 2s, 2pX, Zpy, and ZpZ natural orbitals provide the
dominant electron correlation effects. These are the only natural orbitals
containing just one nodal plane. Plots of the 2s and 2p NO's are given in
Fig. 15, where we see that the higher NO's are concentrated in the same

region as the 1s orbital but with the additional nodal plane (circular for

¢ ¢ and planar for each ¢2p)‘
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Table 3-4. Energies for CI wavefunctions of the ground state of He atom.

Number of Basis Functions?

Energy
s p d f{f g
5 -2.878962
5 4 -2.900392
5 4 3 -2.902582
5 4 3 2 -2.903072
5 4 3 2 1 -2.903202
Pekeris -2.90372°
HF -2.86168
GVB -2. 87800

4 A. W. Weiss, Phys. Rev. 122, 1826 (1961).
be. L. Pekeris, Phys. Rev. 115, 1216 (1959).

Table 3-5. Analysis of He CI wavefunction in terms of Natural Orbitals.?

Natural Energy Lowering % ot Total b
Orbital Millihartrees Correlation Energy

2s 16.30 38.82

2p 19.51 46. 46

3s 0.88 2.09

3p 1.63 3.87

3d 1.80 4.28

4s 0.09 0.22

4p 0. 26 0.62

4d 0.36 0.86

af 0.35 _0.83

Totals 41.18 98.05

% N. Sabelli and J. Hinze, J. Chem. Phys., 50, 584 (1989).

b Total correlation energy = 0. 0420 hartree.
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Using the five dominant NO's: 1s, 2s, 2py, 2Py, 2p,, leads to the

wavefunction

CI

o= Cis ¢1s ¢1s - C2s qbZS ¢Zs - C42p[ ¢2px¢sz+ ¢2py¢2py+¢2pz¢2PZ] (6)

where

C1s = 0.99599
C2s = +0.06160
C2p = +0.06188

This wavefunction has an energy of -2.8975, just 0.17 eV above the exact
(nonrelativistic) energy of -2.9037. This wavefunction is sufficiently
accurate that for the purposes of this course we will consider (6) as the

exact wavefunction of He.

§3. 6. 3a Interpretation of the CI Wavefunction

To interpret the wavefunction (6) ‘we will consider one by one the
effects of adding any one of the four correlating terms to the dominant

(first) term.

The wavefunction
Clscbls(Pls - C2s¢2s¢25 (7)
can be rewritten in a GVB form

¢a¢'b + ¢b¢a (8)
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where

ﬁqba =VC1sP15* VCogPaq

(9)
“fz‘qbb =VCisP15 " VCogPag

are GVB type orbitals. Thus from §3.6.2 we see that the ¢4 natural orbital
in (7) builds in radial correlation, increasing the probability of the second
electron being at larger r when the first electron is at smaller r (and vice versa).

Similarly the wavefunction

C1s%1s%1s - 02p¢2px¢2px
can also be rewritten as (8) where

N2, = VT by o+ CopP2p
% (10)
N2¢y, =VCi5%15 - VCyp ‘f’sz

In (10) we see that when one electron is in the +x direction, the other tends

to be in the -x direction. Similar results occur for the d)zpy and ¢2pz terms.
The three correlations resulting from the terms involving p orbitals are
grouped together and referred to as angular correlation.

The three terms of (6) involving p orbitals can be written as

[92px P2px * P20y P2py * P2pz ¢2pz] -

R(1)R(2)[sin6, cos ¢, sing, cos ¢, + sinf, sing, sin@, sine,

+ cos 6, cos b, |

]

Rzp(l)Rzp(Z) cos 0, : (11)
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where R(i) is the radial part of the orbital ¢. and 9, is the angle between

electron 1 and electron 2. Combining with the first term of (8) we obtain

With this form we see that the magnitude of the wavefunction is increased
(with respect to ¢, ¢, ) for [6,;] > 90° and decreased for |6,,| < 90°.
Thus (12) effects an angular correlation of the electrons.

Each of the four dominant correlating orbitals has one nodal plane
not contained in* qbl s and the correlation effect is across this nodal plane
(increased probability of electrons being on opposite sides). Starting
with the ¢>1 s orbital, there are just four possible orbitals orthogonal to
qbl s but containing a single ncdal plane, namely the above four. All
additional correlating terms will involve two or more nodal planes
(leading to higher energies) and all are relatively uniiﬂﬁérf%ht, lead{hg
to a total energy contribution of 6.2mh=0.17eV = 3.9 kcal. For the purposes
of most of our considerations of molecules an energy error of 0.1 eV
is acceptable, and we will completely ignore these smaller terms.

Thus we will consider (8) as the CI wavefunction of He.

*QOf course qbl s has no nodal planes; however, we have worded this so

as to be appropriate also for correlations of more complicated orbitals

than (Pls.
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§3.7 Wavefunctions for H,

In this section we will discuss the HF, GVB, and CI wavefunctions

for H,.

§3.7.1 HF Wavefunctions for H,

In Figure 16 we show how quickly the HF wavefunctions for H, converge
as a function of basis set size (P). The major effects in the orbital shape are
in the bond region.

In Figure 17 we compare the MO wavefunction (P = 2, ¢ = 1) with the
MBS wavefunction (P = 2, COPT)‘ Here there are significant changes near
the nuclear and bond regions.

Comparing the energies in Table 6 we see that P = 6 leads to an energy
within 0.00152 h = 0.04 eV =1 kcal of the HF limit, We consider this as a
good level of accuracy. The P = 6 basis has two (optimized) s functions -«
on each H and an (optimized) p function on each H. Such a basis is referred to
as double valence® (for the two sets of s functions) plus polarization (for the
p functions) and will be denoted as DV-P.

With even the best of these HF wavefunctions, the energy is 0,04081 h =
1.1 eV above the exact (nonrelativistic) energy of H,, about the same as the
correlation error of He (and other two-electron ions).

The HF potential curve using the P = 6 basis of Table 6 (optimized at
each R but restricted so that ¢y s = §28) is shown in Fig. 18. Just as with
the MO wavefunction, the HF wavefunction at large R leads to very serious

errors. Thus at R = 6 a, with the P = 6 wavefunction, the energy is

*More commonly, double valence is referred to as double zeta.
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E = -0.82199 (already far above the dissociation limit, E = -1.0), and the
orbital energy is € = -0.32170 (way off from the correct value at large R,
€ = -0.50). For R =« the HF wavefunction leads to an energy of -0.71542

which is 7.744 eV above the dissociation limit.*

§3.7.2 The GVB Wavefunction for H,

The GVB wavefunctions and energies for several (optimized) basis sets
are given in Table 7. A quite adequate description (0.2 kcal from the limit)
is obtained using a single (optimized) s function and a single D, function on
each center. Even the MBS is only 4.1 mh = 0.11 eV above the limit.

The GVB orbitals as a function of R are shown in Fig. 19. At large R
the orbitals are atomic-like, but for smaller R the GVB orbital gradually
becomes more contracted about each nucleus. These readjustments in the
orbitals are such that the contragradience in the bond region is about the
same as for the VB wavefunction. From 1 to 6 a; the GVB orbitals lead to
a much greater overlap than the VB orbital as shown in Fig. 19. For example,

SGVB

atR=1.4a,, = 0.804 as compared to SVP = 0,753,

§3.7.2a Energy Analysis

The GVB orbitals for H, are compared with the VB orbitals in Fig. 21,
where we see that the orbitals readjust in such a way as to maintain the large
contragradience in the bond region while concentrating the orbitals more about

each nucleus. The GVB energy curves are compared with other energy curves

in Fig. 22,

*W. A. Goddard, J. Chem. Phys., 48, 5337 (1968).
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Table 3-7., Energy and wavefunctions for GVB calculations on H, at 1.4 a,.

Only the ¢ 0 orbital is given, the ¢r orbital is the mirror image.

The same basis occurs on both centers with the orbitals on

the left first (the basis functions on the right have no exponent

listed). A P, basis function with + coefficient is positive

toward the second center. All quantities in hartree atomic units.

2 42 6°
E -1.147777 -1.151345 -1.151526
€ ~0.6877 -0.68348 ~0. 68472
S 0.79700 0.80093 0.80420
ns(()C,,  1s(1.2005) 0.91287  1s(1.1909) 0.88890  1s(1.3129) 0.77499
1s 0.12303  2p,(2.0028) -0.00672  2s(1.1566) 0.11116

1s 0.13631
2pZ 0.03006

2p,,(1.9549) -0.00310

1s
2s

2pZ

0.12161
0.04199
0.03769

aUsing 1s(1.262) and 2s(1.191) basis functions on each center leads to

b

E =-1.147804.

Using 1s(1.3092), 2s(1.1273), ZpZ(1.700), 3de(2. 37) basis functions on
each center leads to E = -1.151887.
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Figure 3-19, The GVB orbitals of H, as a function of R (note, the cusps at the
nuclei have disappeared due to use of Gaussian basis functions).
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Some of the energy parameters of the HF, VB, and GVB
wavefunctions are compared in Table 8,while the §opt as a function
of R is given in Fig. 23, For ¢ = 1,0 all three wavefunctions yield
an R, far too large (14% to 19%). Optimiiing ¢ leads to errors of
only 1% to 2% in R and improves the calculated bond energies by ~ 20%.
It is characteristic that GVB leads to too large an R while HF leads
to too small an R.

Using the form
¢a ¢b + d)b d)a (1)

for the GVB wavefunction, we can define classical and exchange terms
mueh as for the VB wavefunction
Ce _
X _ C¢
Egve =Egvs - EgvB -
etc. This leads to the results in Fig. 24, where we see that the exchange
term still dominates the bonding. In particular for R>R, the
E* is very nearly the same for VB and GVB. Thus the main improvement
here is in the classical term, EC" . Similarly,in Fig. 25 we see that
it is the exchange part of the kinetic energy that dominates the bonding
~ energy. Again for R >R e We see only minor changes in T* between

VB and GVB.
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Table 3-8 . Comparison of results on H, for approximate wavefunctions
using two basis functions. All quantities are in atomic units;

the energies are relative to two hydrogen atoms at R = «,

HF VB GVB Exact
¢e=1.0 Re 1.603 1.643 1.6568
Ee - 0.0990808 -0.115971 -0.118651
COPT Re 1.385 1.414 1.431 1.401
Ee -0.128231 -0.139083 -0.147938 -0.174470
Q)PT 1.1931 1.1661 1.1937
R=1.4a, E -0.128189 -0.139049 -0.147777 -0.174470

SoPT 1.1895 1.1695 1.2005
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§3.7.3 CI Wavefunctions for H,

In §3.6.3 we found that in He there are four important correlations each

involving a correlating natural orbital having one nodal plane

2s radial

2pX

2py angular ()
sz

For H, the HF orbital is nodeless and again we can find four correlating natural
orbitals each with one nodal plane. These are illustrated in Fig. 26, where
the names log, lo ., etc. will be explained below.

As R — 0, the H, orbitals in Fig.26 change smoothly into (we say that
they correlate with) the He orbitals in (2):

H, He
lo —1
g S

20 — 2
g S

(3)

10‘u - 2pZ

117ux - 2px

1r  —2
Tay — “Py

and hence the correlation effects are closely related:



X
()
Dominant Natural Orbital (10,) 2
'T‘X
/ ’,:\\ !
I x \' ; — Z
Left Right N
Correlating Orbital (1o u) ~ - '
© T©
Starboard Portside _— X - — X -7z
Correlation (17 ) - —_——
X / /"\\ [ 7~ )
(v Lo
NI N2
© "
Up Down Correlation (l‘ﬂy) X X —>z
/’:‘ PPN
L)) (D
NI i
X
A
N\ /—- -~
In Out Correlation (20) Y @\3{ \ .
' \ e

Figure 3-26. Correlating orbitals for H,. Long dashes indicate
nodal planes, solid lines are positive amplitudes
and dotted lines negative amplitudes.
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' léft-right (lou) -—— angular-z (pz)
starboard-portside (1x ux) — angular-x ( P,) (4)
up-down (l-qruy) -— angular-y ( py)
in-out (2cg) — radial (2s)

The five dominant natural orbitals for H, are shown in Fig. 27, which
should be compared to Fig. 15 for He. With these five dominant NO's the

wavefunction

¥ =C 0] ¢ -C 0} o} -C ¢ ¢
1 1
og lcg og 20g Zog Z(Ig lou lcru lcu 5)

o1 ]

-C,_[o¢ ¢ + ¢
lnu lnux mux 111'u v

y
leads to an energy of -1.1699 h. Comparing to the exact energy of -1.1744 h,
we see that wavefunction (5) accounts for all but 4.5 mh = 0.12 eV = 2. 8 kcal
of the exact energy. This is quite adequate for our purposes and we will
ignore all other terms.

A more complete analysis [E. R. Davidson and L. L. Jones, J. Chem.
Phys., 37, 2966 (1962)] of CI calculations on H, (for R = 1.4 a) in terms of
NQO's is given in Table 9.

For the molecule at Rg the dominant correlation is left-right. This

becomes even more so for larger R. Thus at R = « the exact wavefunction is

\If(l,?..) = Cl ¢ ¢ -C o}
og 10‘g, lcrg, lcru loulou
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NATURAL ORBITALS FOR Hs (R = 1.4aq)

5.0

-50 7 50 7

Figure 3-27. The natural orbitals of H, for
R=1.42a, [FromG. Dasand
A. C., Wahl, J. Chem. Phys.,
44, 87 (1966)] .
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Table 3-9. Analysis of H, CI wavefunction in terms of NO. a

Natural Energy Lowering % of Total b
Orbital Millihartrees Correlation Energy
lo 18. 47 45.25
u
in 10. 34 26.56
u
I?.O'g 7.03 17.22
1 L5 1.
"g 0.7 84
3 0.51 1.25
%
20‘u 0.49 1.20
16 0.49 1.20
g
lﬂu 0.56 1.37
4 0.29 .71
O'g 0.7
Totals 39.43 96.60
? E. R. Davidson and L. L. Jones, J. Chem. Phys. 37, 2966 (1962).
b

Total correlation energy = 0. 04082 hartrees.
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where

1
C =C = -
log lou J2

P10, = (X1sp * X1gp)/V2

P10, = (X1gg = X1gp)/ V2 .
That is, only left-right correlation is present at R =, For R < 0.8 a,
in-out correlation becomes more important than left-right correlation.

3.7.3a Notation

For diatomic molecules orbitals are classified in terms

of their dependence upon ¢ [the angle of rotation about the

molecular axis (z)]. Thus

o => independent of ¢
=> cOosQ
=> sing

where ¢ is referenced with respect to the xz plane.
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§3.8 Open Shell Wavefunctions

In §2. 2 we found that the second and third states of H, have the form

' = ¢ b+ o
grua urg
(1)

1l

3
& = 9 by - Py 0, -
where the orbitals ¢ g and qbu are orthogonal. Such wavefunctions (with
orthogonal orbitals) are referred to as open shell wavefunctions. We will
occasionally deal with such wavefunctions and will analyze some aspects of
the wavefunctions here.

The energies of the wavefunctions are
N
E = =~ 2
D (2)

where

[0
o
|

= (0, 0,0, 0, 2 0, 0,)

CREICRE N C MMM

=1 (3)

IN = (9,0, |50, 0,5 9,0,) . (4)
The first term of (4) is
(99,1500, = (glhlg)(ulu) + (gleXuln|w +(gu|-;11-;lgu>
=(glnle) + ulnlwy + 7,
where

(pgl0,) =0 (5)

and the second term is
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£ (950,150, 0,) = 2{(glnlw)(ule) + ¢glw) ulnle) + (ulsug))

= 4+ .
Kgu

Thus the energy (2) becomes
E = {(g|h|g) + (ulh|u) + Jgui Kgu
= (g|hlg) + (ulhfu) + (@g|uw)  (gugu).

Thus

1 3
E-E =2 .
Kgu

Since K, > 0, the 3% state is always below the & state.

The above analysis shows that the wavefunctions
OOyt bydy
lead to an electron repulsion energy

cé
E-" ¢ Kgu .

(6)

(7)

Thus the significance of the exchange integral Kgu is that it is the change

in the energy upon superimposing the exchanged wavefunction q;sll) ¢fgz)

on qb(gl) ¢$12) . See 82.2.
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Appendix 3-A. Permutational §Xmmetrzz Two Electrons

Summary: Since the Hamiltonian 3¢(1, 2) for a two-electron system

is invariant under permutation of electrons
5(2,1) = 3¢(1,2) (1)

the exact eigenstates of 3¢ are each either symmetric or antisymmetric

under permutation.

Proof: Consider that ¥, is an exact eigenfunction of
3(1,2)¥v,(1,2) = E;¥,(1,2). (2)
Renumbering the electrons this becomes
3(2,1)¥,(2,1) = E; ¥ (2,1). (3)
But using (1) in (3) leads to
5¢(1,2)¥,(2,1) = E,¥,(2,1). (4)

Thus from (2) and (4) both ¥,(1,2) and ¥ (2,1) are eigenfunctions of

3¢(1,2), both with the same energy. There are two possibilities here:

(i) there are two (or more) different (linearly independent) states with
energy E  or

(ii) there is only one state with energy E,.

In case (ii) it must be that ¥ (2,1) is proportional to ¥ (1, 2)
T,(2,1) = a¥,(1,2). (5)
But interchanging 1 and 2 in (5) leads to
¥, (1,2) = a¥,(2,1) (6)

and substituting (6) into (5) leads to
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¥,(2,1) = 2w, (2,1).
Thus
A ==x1. (7)

That is, for a nondegenerate state the wavefunction must be either symmetric
(n = +1)

¥5(2,1) = ¥5(1,2), (8)
or antisymmetric () = -1)
¥3(2,1) = ¥3(1,2) (9)

under permutation of the electrons, respectively.

Assuming now case (i) we define new functions

U o(1,2)= ¥, (1,2) + ¥(2,1)
v3(1,2) = ¥,(1,2). - ¥(2,1)

Applying 3 we obtain

KT =E, 85
K2 = Eg¥ 2

and hence the exact eigenfunctions of JC are again either symmetric or

antisymmetric. QED
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AEEendix 3-B. Natural Orbitals

A general CI wavefunction for the ground state of a two-electron system

My

¥5(1,2) = EMCRNC (1)
K,V=

can always be rewritten in terms of doubly-occupied orbitals

Z

C X
p=1 (o3

NJLY

¥5(1,2) = (1%, @, (2)
where the natural orbitals {_)Z u} are linear combinations of the original basis

functions { Xy }.

Proof:

Since ws is symmetric, the coefficient matrix is symmetric.

CI-W= Cuu

If we choose new basis functions {Xu; p=1,...P}that are linear
combinations of the old basis function {x u; u=1,...P}
Xp= 2V X,
v

then the wavefunction (1) becomes

S_
o= ) C Voo
uv,on

= Em 20(1) iﬂ (2)
on

v, X, @

where
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Con =L Vwcuv an )

B,V
The wavefunction ¥° is unchanged by this transformation of the basis,
but in the new basis the CI expansion coefficients are different.

In matrix notation the new coefficients are given by

c =Vcv (3)

Since C is a real symmetric matrix, there is always some transformation
V for which the transformed matrix C is diagonal. Thus there is always

a particular choice of basis functions such that
P
=) C
u=1

g iu(l)iu@) (2)
With this basis there are only P terms in the CI expansion rather than

P’ asin (1). Thus (2) is a much simpler wavefunction. To find the V
leading to the natural orbitals we must first solve the CI equations to

find C. Hence the natural orbitals do not help us solve for the CI wave-
functions. However, having obtained a CI wavefunction, we will immediately
transform to the natural orbitals in order to discuss and interpret the

wavefunction.
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Aggendix 3-C. Ewvaluation of Energz Quantities For Atoms

Here we consider the evaluation of the various energy quantities

for a two-electron system with both electrons in the same 1s orbital,

bg =Ne T 1)

where the orbital exponent { is variable.

3.C.1 One Electron Quantities

First the normalization coefficient, N, is obtained from

2 -2

1=(¢lsl¢ls)=N fdxdydze Cr
-]

=4uN2f rdre”

0

2¢r

S LI fpzdpe'p
(28) 0

87T .2
=—5 N

8¢

b

so that
3

S
N=> - (2)

The nuclear attraction terms are

. <]
2
Ve = (1s]- Z |19) = -2N° [ rare ¥ [ T sinoaeap

[4) 0 0
_ ZN 4n
==z
4¢
=-0Z (3)
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The kinetic energy term is obtained most simply by noting that

A
Zd)ls - 'C{‘bls €r

~N . . . . .
(where e.isa unit vector in the r direction), and hence

T,s = (IsElls) = (1s]-3V"[15) = $¢vo, - Vo, )

=18 (bl = 48

To check these quantities consider He' where €=2. In this

case (3) and (4) lead to

ES=T

1 1s 1s
where Z = 2. Optimizing { leads to
(=12

and hence

both of which are correct.

3.C.2 Two Electron Quantities

For He we also need the two-electron interaction term

| 1

15,15 = (P15%1s Tz

where

310 = [ex, dy, dz, - oy ()]

is the Coulomb field evaluated at r, due to an electron (called 2) in

the 1s orbital.

+VeR _1e® ey

ld’ls(bls) = <¢1s‘Jlsl¢1s> ’

(4)

(5)

(6)



3-C-3

The complication in evaluating such integrals as J 1s. 1s is that
’
the integrand of (6) depends on r,,. The usual solution is to use the

Laplace expansion

© L
1 T <
T, Z | Pl (cos 6;,) (7)
£=0 r>
where
r=r if r,<r,
=T, if r,<r,

and oppositely for r,. With (7), (6) becomes

2
S PGV -Izo{f ;;n r, dr, |6, @) fsme d6 Pl(cose)f d¢}. (8)

The integration over 0 is zero unless { =0, so that (8) becomes
r,

1 (1) =47 f rz;rz l¢ls(2)] = 41r{——- frz dr2‘¢‘1s(2 “"frzdrz{d’ls(z ' }

(9)

Before proceeding to evaluate J 1 S(l), one should notice -
that (9) is a well-known result in electrostatics. The quantity

T,
2 2
Q =47 [ 1, drzld)ls(z)l
0
is just the part of the charge distribution inside the point r,. According
to (9) the total contribution of this spherically symmetric charge distri-

bution inside r; is the same value
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-Q,

asif all that charge (Q,) were localized at the nucleus. Letting
Q.(r) = 4rr*o; (O],
the quantity

Q.(r)dr

is the charge on the spherical shell of radius r and thickness dr.

According to (9) the contribution of this charge to the potential is

LQ.(ryar

and is the same for all r, inside r.

Grunging on, .we find

. r . 5 4 Nz Pi .
Q, = 47N f r, drp e ST - —ﬂ—zr f p dpe-p
° 29 ,

where p, = 2{r,. Integrating by parts this becomes
- 2
Q1=[1 - € pl(l‘*'Pl"’%Pl)] .

Similarly the second term of (9) is

2 R - - -
I, =47N frzdrze Zcrz=?;’[p1e Pi, P,
I

Thus

T = QL= fa- e e h 0

For large r, this becomes

=1
I1s = 1o (11)

1s



3-C-5

as expected, and for small r, we obtain

I =8~ 38" + o) (12)

Thus J s has the form in Fig. 28.

Jlsl\

€

1

N
g
r

Figure 3-28. The Coulomb potential J,_ (r)

Using (10) in (5) we obtain

- 41N _foorz dr e-2§r[% - %Q-ZCr - ge-z“;’r]
[}

4 3{ 1 z 1 2 - 2§ 3
(28) 4t)  (49)

Jls,ls

(13)

ooty
Ve

Problem 1. Carry through the above analysis for a wavefunction

of the form

$(1) 0 (2)
where

o(1) =Ne tTs
and

8(2) = N'e M7z

with £ and n different.
3.C.3 Qualitative Analysis of Jy g 1s

Defining the average size, r, for the d)l s orbital as



3-C-6
1lg <1
<¢IS li?l('blS) = _I:_

we see from (3) that
T-g

An approximate value of J 1s, 1s can be obtained by assuming each
electron is at its average radius, T = %, and averaging over the distances
between these electrons, assuming each to be on the sphere of radius r.
If the instantaneous location of electron 1 is taken to define the z axis,
then the average position of €lectron 2 will be approximately in the

xy plane. This leads to

T.=V3T

and hence to

J -1 _1
1s,1s VBF V3

=0.707 ¢

The exact value is ’

Jls,ls =0.625 ¢

so that the above estimate is only about 10% high.
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APPENDIX 3-D. The Exact Wavefunction of H;

In order to solve for the exact wavefunction of H: we use elliptic

coordinates
n = (ra - rb)/R
¢ = azimuthal angle

as defined in Appendix 2-A. With elliptic coordinates, the Hamiltonian for
H;’ becomes separable (expressible as a sum of terms each depending on a
different variable), and hence the exact wavefunction of H.j can be factored

into terms each depending upon different variables,
v (gy n, 90) = A(E)M(ﬂ)@(@ .
For the ground state of H,' at R = 2a,, the resulting (unnormalized)

wavefunction is [ D.R. Bates, K.Ledsham, and A.L. Stewart,
Phil. Trans.Roy.Soc. A246,215 (1953)]

A = (s 5% 34679 (1, 0. 01685 + 0.00045%) ™1 48501
M(n) = [1.1450P, (x) + 0.29844 B, () + 0.011461 P, (n)

+ 0.000184 P, () + 0.000002 P, ()],
(@) =1, (5)

where 6 = (£- 1)/(1 + £) and P,(n) are Legendre polynomials
[P, =1, P,=3(3n" - 1),...]

For comparison the MBS wavefunction in elliptic coordinates is

R R R
- - R -Ba| -ty
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corresponding to

A(r) = e-1-23¢

M(n) = cosh(1.237)

at R = 2a, (the optimum ¢ at R = 2a, is ¢ =1.23). At R = 2, the MBS
wavefunction leads to ¢ = 1,23, somewhat more diffuse than the 1.485
for the exact wavefunction. The optimum energy and bond lengths for

the exact wavefunction® are listed in Table 1.

Exercise: expand the M(z) expression for the MBS wavefunction in terms

of Py (n) and compare with the Bates et al. wavefunction.

*When we say '""exact’ here we are referring to the exact solutions of
(3) and (4). However, (3) and (4) do not lead to an exact description of H;" .
The two main assumptions here are (1) the neglect of the nuclear kinetic
energy terms (referred to as Born-Oppenheimer breakdown) and (2) neglect
of relativistic effects. Inclusion of nuclear kinetic energy leads to
corrections of arder 5-11{/1—’ where M is the proton mass (in Hartree atomic
units, e.g., 1/2M = 0.0003h = 0.007 eV). The actual correction to
the energy at Rg from the nuclear kinetic energy terms (see Table 1)
is +.00085h = 0.023 eV = 0.53 kecal, and from the relativistic effects
is .000005h = 0.00013 eV = 0.003 kcal. In order to compare with
experiment such terms must be included (actually, for H; the experimental
results are not yet precise enough to require these corrections). However,
in this course we will generally ignore such effects and will refer only to

results of nonrelativistic, fixed nuclei calculations.



