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Preface

HIS BOOK WAS DEVELOPED {rom my lectures on chemical
bonding in Chemistry 10 at Columbia in the spring of 1962,
and is mainly intended for the undergraduate student in chemistry
who desires an introduction to the modern theories of chemical
bonding. The material is designed for a one-semester course in
bonding, but it may have greater use as a supplementary text in
the undergraduate chemistry curriculum.

The book starts with a discussion of atomic structure and
proceeds to the principal subject of chemical bonding. The
material in the first chapter is necessarily quite condensed and is
intended as a review. (For more details, the student is referred
to R. M. Hochstrasser, Behavior of Eleclrons in Atoms, Benjamin,
New York, 1964).

Fach chapter in the bonding discussion is devoted to an impor-
tant family of molecules. Chapters Il through VII take up, in
order, the principal molecular structures encountered as one pro-
ceeds from hydrogen through the second row of the periodic table,
Thus, this part of the book discusses bonding in diatomic, linear
triatomic, trigonal planar, tetrahedral, trigonal pyramidal, and
angular triatomic molecules. Chapters VIII and IX present an
introduction to modern ideas of bonding in organic molecules and
transition metal complexes. Throughout, our artist has used
small dots in drawing the boundary-surface pictures of orbitals.
The dots are intended only to give a pleasing three-dimensional
effect. Our drawings are not inlended to be charge-cloud pictures.
Charge-cloud pictures attempt to show the electronic charge
density in an orbital as a function of the distance from the nucleus
by varying the ‘““dot concentration.”

Vil




viii Preface

The discussion of atomic structure does not start with the
Schrédinger equation, but with the Bohr theory. 1 believe most
students appreciate the opportunity of learning the development
of atomic theory in this century and can make the transitioh
from orbits to orbitals without much difficulty. The student can
also calculate several important physical quantities from the
simple Bohr theory. At the end of the first chapter, there is a
discussion of atomic-term symbols in the Russell-Sauunders
LSM ;Mg approximation.

In this book the molecular orbital theory is used to describe
bonding in molecules. Where appropriate, the general molecular
orbitals are compared with valence-hond and crystal-field descrip-
tions. I have written this book for students who have had no
training in group theory. Although symmetry principles are
used throughout in the molecular orbital treatment, the formal
group-theoretical methods are not employed, and only in Chapter
IX are group-theoretical symbols used. Professor Carl Ballhausen
and I are publishing an introductory lecture-note volume on
molecular orbital theory, which was written at a slightly higher
fevel than the present book. The lecture notes emphasize the
application of group theory to clectronic structural problems.

The present material includes problems integrated in the text;
most of these are accompanied by the worked-out solutions,
There are also a substantial number of problems and questions
at the end of each chapter.

It is a great pleasure to acknowledge the unfailing support,
encouragement, and devotion of the seventy-seven fellows who
took the Columbia College course called Chemistry 10 in the
spring of 1962. 1 doubt if 1 shall ever have the privilege of working
with a finer group. The class notes, written by Stephen Steinig
and Robert Price, were of considerable help to me in preparing
the first draft.

I would like to thank Professors Ralph G. Pearson, John D.
Roberts, and Arlen Viste for reading the manuscript and offering
many helpful suggestions. Particularly I wish to thank one of my
students, James Halper, who critically read the manuscript in
every draft. Finally, a large vote of thanks goes to Diane Celeste,
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Physicai Constants’

Il

Planck’s constant, h 6.6256 X 1077 erg-sec

Velocity of light, ¢ 2.997925 X 10Y cm sec™?

Electron rest mass, m. = 9.1091 X 10 % ¢

Electronic charge, e 4.80298 X 107 esu (cm 32 sec™?)
Bohr radius, a 0.529167 A

Avogadro’s number, NV = 6.0247 X 10% mole™ (physical scale)
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If

Cownversion Factors

Energy
1 electron volt (eV) = 8066 cm™ = 23.069 kcal mole™
1 atomic unit (au) = 27.21 eV = 4.3592 X 107 ergs
= 2.1947 X 10° em™ = 627.71 kecal mole™?
Length
1 Angstrom (A) = 107% cm

2 Values recommended by the National Bureau of Standards; see J. Chem.
Educ., 40, 642 (1963).
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Electrons in Atoms

1-1 INTRODUCTORY REMARKS

he main purpose of this book is the discussion of bonding in

several important classes of molecules. Before starting this dis-
cussion, we shall review briefly the pertinent details of atomic struc-
ture. Since in our opinion the modern theories of atomic structure
began with the ideas of Niels Bohr, we start with the Bohr theory
of the hydrogen atom.

1-2 BOHR THEORY OF THE HYDROGEN ATOM (1913)

Bohr pictured the electron in a hydrogen atom moving in a circular
orbit about the proton (see Fig. 1-1). Note that in Fig. 1-1, m, rep-
resents the mass of the electron, #z, the mass of the nucleus, r the
radius of the circular orbit, and v the linear velocity of the electron.

For a stable orbit, the following condition must be met: the cen-
trifugal force exerted by the moving electron must equal the com-
bined forces of attraction between the nucleus and the electron:

2
centrifugal force = ”L: (1-1)

There are two attractive forces tending to keep the electron in orbit:
the electric force of attraction between the proton and the electron,

I



2 Electrons and Chemical Bonding

Figure 1-1 Bohr’s picture of the hydrogen atom.

and the gravitational force of attraction. Of these, the electric force
greatly predominates and we may neglect the gravitational force:

2
v g 4
electric force of attraction = 5 a1-2

Equating (1-1) and (1-2), we have the condition for a stable orbit,
which is

ma? &
Pl (-3

We are now able to calculate the energy of an electron moving in
one of the Bohr orbits. The total energy is the sum of the kinetic
energy T and the potential energy V; thus

E=T+V 1-4)
where T is the energy due to motion

T = Lma? (1-5)
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and V' is the energy due to electric attraction.

- f < dr = fiz (1-6)

Thus the total energy is
E = ima® — &/r -7
However, the condition for a stable orbit is

2 2 2

eV ¢ ¢

— = or ma? = — (1-8)
r 7 v

Thus, substituting for m.+* in Eq. (1-7), we have

R -9

Now we need only specify the orbit radius r and we can calculate the
energy. According to Eq. (1-9), all energies are allowed from zero
(r = ) to infinity (r = 0).

At this point Bohr made a novel assumption—that zhe angular
momentum of the system, equal to mevr, can only have certain discrete values,
or quanta. The result is that only certain electron orbits are allowed.
According to the theory, the guantum wnit of angular momentum is
b/2r (b is a constant, named after Max Planck, which-is defined on
page 5). Thus, in mathematical terms, Bobr's assumption was

e
mevr = n(z;) (1-10)
with =1, 2, 3 . . . (all integers to «). Solving for » in Eq.
(1-10), we have
by 1
v = n<27r> p (a-1p

Substituting the value of v from Eq. (1-11) in the condition for a
stable orbit [Eq. (1-8)], we obtain
1212 h? e

=< (1-12)

4 lr? r
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or

72 h?

462

r (1-13)
Equation (1-13) gives the radius of the allowable electron orbits for
the hydrogen atom in terms of the guantum number, n. The energy
associated with each allowable orbit may now be calculated by sub-
stituting the value of » from Eq. (1-13) in the energy expression

[Eq. (1-9)], giving

20t
n2h?

E= (1-14)
PROBLEMS

I-1. Calculate the radius of the first Bohr orbit.
Solution. The radius of the first Bohr orbit may be obtained directly
from Eq. (1-13)

Substituting #» = 1 and the values of the constants, we obtain

_ (1)%6.6238 X 1077 erg-sec ?
4(3.1416)%(9.1072 X 1075 g)(4.8022 X 1070 abs esu)?
= 0.529 X 107 ¥ cm = 0.529 A

The Bohr radius for # = 1 is designated .

1-2. Calculate the velocity of an electron in the first Bohr orbit
of the hydrogen atom.
Solution. From Eq. (1-11),

(&)
v = nl—|—
2u/ma
Substituting # = 1 and r = 4, = 0.529 X 1078 cm, we obtain

6.6238 X 107¥ erg-sec)

R (
v=O 2(3.1416)

1
X 91072 X 105 £)(0.529 X 10~ cm)
= 2.188 X 10® cm sec™?
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1-3 THE SPECTRUM OF THE HYDROGEN ATOM

The most stable state of an atom has the lowest energy and
this is called the grownd staze. From Eq. (1-14) it is clear that the
most stable electronic state of the hydrogen atom occurs when # =1.
States that have # > 1 are less stable than the ground state and
understandably ate called excited stazes. The electron in the hydrogen
atom may jump from the #» = 1 level to another # level if the correct
amount of energy is supplied. If the energy supplied is light energy,
light is absorbed by the atom at the light frequency exactly equiva-
lent to the energy required to perform the guantum jump. On the
other hand, light is emitted if an electron falls back from a higher »
level to the ground-state (# = 1) level.

The light absorbed or emitted at certain characteristic frequencies
as a result of the electron changing orbits may be captured as a series
of lines on a photographic plate. The lines resulting from light ab-
sorption constitute an absorption spectrum, and the lines resulting from
emission constitute an emission spectrum. The frequency » of light
absorbed or emitted is related to energy E by the equation deduced
by Planck and Einstein, '

E= 1)y (1-1%)

where b is called Planck’s constant and is equal to 6.625 X 107
erg-sec.

It was known a long time before the Bohr theory that the positions
of the emission lines in the spectrum of the hydrogen atom could be
described by a very simple equation

VH &= RH(;;‘ — —7;2];2_> (1——16)
where # and  are integers, and where Ry is a constant, called the
Rydberg constant after the man who first discovered the empirical cor-
relation.

This equation can be obtained directly from the Bohr theory as
follows: The transition energy (En) of any electron jump in the
hydrogen atom is the energy difference between an initial state I and
a final state II. That is,

Ey = En— I (1-17)
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or, from Eq. (1-14),

_ 21206t < 271-9792@94)
Eu=— o0 g (1-18)
2mmeet( 1 1
=% (z;é T ) (-19)

Replacing En with its equivalent frequency of light from Eq. (1-15),
we have

2wtimeet [ 1 1
= 5 (e ) (1=20)
Equation (1-20) is equivalent to the experimental result, Eq. (1-16),
with w1 = n, #n11 = m, and Ru = Qn¥me?)/F. Using the value of
9.1085 X 107 g for the rest mass of the electron, the Bohr-theory
value of the Rydberg constant is

2mmet  2(3.1416)2(9.1085 X 107*)(4.8029 X 1010}
B (6.6252 X 107
= 3.2898 X 10% cycles/sec (1-21)
It is common practice to express Ry in wave numbers v tather than

in frequency. Wave numbers and frequency are related by the equa-
tion

Rua =

v = (P (1-22)

where ¢ is the velocity of light. Thus

_3.2898 X 10% cycles/sec .
Rt = =5 0579 % 109 em/sec — 109737 em™ (1223
The accurately known experimental value of Ry is 109,677.581 cm™".
This remarkable agreement of theory and experiment was a great
triumph for the Bohr theory. '

PROBLEMS
1-3. Calculate the ionization potential of the hydrogen atom.
Solution. The ionization potential (IP) of an atom or molecule is the
energy needed to completely remove an electron from the atom or
molecule in its ground state, forming a positive ion. For the hy-
drogen atom, the process is
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HoH+ 4o E=1P
We may start with Eq. (1-19),
D6t ( 1 1 >
P N
. b ni* it

For the ground state, #r = 1; for the state in which the electron is
completely removed from the atom, #ir = . Thus,

2rm.et
IP = 7
Recall that
2
P
0 R

and therefore

1 2a'me®
2a0 B
Then
@ (4.8022 X 107 abs esu)?

IP=—
2 2(0.529 X 1078 cm)

=2.179 X 107 erg

Tonization potentials are usually expressed in electron volts. Since
lerg = 6.2419 X 10" eV, we calculate

IP = 2.179 X 107 erg = 13.60 eV

" The experimental value of the IP of the hydrogen atom is 13.595 eV.
1-4. Calculate the third ionization potential of the lithium atom.
Solution. The lithium atom is composed of a nucleus of charge
+3(Z = 3) and three electrons. The first ionization potential IP,
of an atom with more than one electron is the energy required to
remove one electron; for lithium,

Li— Lit E=1p

The energy needed to remove an electron from the unipositive ion
Li* is defined as the second ionization potential IP; of lithium,

Lit — Li**t E=1P,

and the third ionization potential IP; of lithium is therefore the
energy required to remove the one remaining electron in Li**,
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The problem of one electron moving around a nucleus of charge
+3 (or +2) is very similar to the hydrogen atom problem. Since
the attractive force is Ze/r%, the condition for a stable orbit is

ma?  ZLe?
2

7

Cartrying this condition through as in the hydrogen atom case and
again making the quantum assumption

<b>
mevt = n| —
2,

we find
nh?
=
4.7
and
g _LmmZ
nh?

Thus Eq. (1-19) gives, for the genetal case of nuclear charge Z,

b= 27r2m52294< 1 1 >
h? n? ol

or simply E = Z2Eq. For lithium, Z = 3 and IP; = (3)%(2.179 X
107 erg) = 1.961 X 1079 erg = 122.4 V.

1-5. The Lyman series of emission spectral lines arises from tran-
sitions in which the excited electron falls back into the » = 1 level.
Calculate the quantum number # of the initial state for the Lyman
line that has ¥ = 97,492.208 cm™.

Solution. We use Eq. (1-20)

in which #rr is the quantum number of the initial state for an
emission line, and #r = 1 for the Lyman series. Using the experi-
mental value

R 2wtm et
o=
ch?

= 109, 677. 581 cm™*
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we have

1
97,492.208 = 109,677.581<1 — —f> or m =3
[

2
1

1-4 THE NEED TO MODIFY THE BOHR THEORY

The idea of an electron circling the nucleus in a well-defined orbit
—just as the moon circles the earth—was easy to grasp, and Boht's
theory gained wide acceptance. Little by little, however, it was
realized that this simple theory was not the final answer. One difhi-
culty was the fact that an atom in a magnetic field has a more compli-
cated emission spectrum than the same atom in the absence of a
magnetic field. This phenomenon is known as the Zeeman effect and
is not explicable by the simple Bohr theory. However, the German
physicist Sommerfeld was able to temporarily rescue the simple
theotry by suggesting elliptical orbits in addition to circular orbits
for the electron. The combined Bobr-Sommerfeld theory explained the
Zeeman effect very nicely.

More serious was the inability of even the Bohr-Sommerfeld
theory to account for the spectral details of the atoms that have sev-
eral electrons. But these were the 1920s and theoretical physics was
enjoying its greatest period. Soon the ideas of de Broglie, Schré-
dinger, and Heisenberg would put atomic theory on a sound founda-
tion.

1-5 EBLECTRON WAVES

In 1924, the French physicist Louis de Broglie suggested that elec-
trons travel in waves, analogous to light waves. The smallest units
of light (light quanta) are called photons. The mass of a photon is
given by the Einstein equation of mass-energy equivalence

E = m? (1-24)

Recall from Eq. (1-15) that the energy and frequency of light are re-
lated by the expression

E=h (1-25)
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Combining Eq. (1-24) and Eq. (1-25), we have

m= - (1-26)
The momentum p of a photon is
p = mv = mc (1-27)
Substituting the mass of a photon from Eq. (1-26), we have

_b

- (1-28)

Since frequency », wavelength X, and velocity ¢ are related by the
expression

A= 1: (1-29)
we find
h
A== 1-30
» (1-30)

Equation (1-30) gives the wavelength of the light waves or elec-
tron waves. For an electron traveling in a circular Bohr orbit, there
must be an integral number of wavelengths in order to have a stand-
ing wave (see Fig. 1-2), ot

N = 2y (1-31)
Substituting for M from Eq. (1-30), we have

n<é> = Jxy
Yy

or

n({%) = rp = angular momentum (1-32)

Thus de Broglie waves can be used to explain Bohr's novel postulate
[Eq. (1-10)].
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e/

Figure 1-2 A standing electron wave with n = 5.

1-6 THE UNCERTAINTY PRINCIPLE

In 1927, Davisson and Germer demonstrated that electrons are
diffracted by crystals in a manner similar to the diffraction of X rays.
These electron-diffraction experiments substantiated de Broglie’s
suggestion that an electron has wave properties such as wavelength,
frequency, phase, and interference. In seemingly direct contradic-
tion, however, certain other experiments, particularly those of
J. J. Thomson, showed that an electron is a particle with mass,
energy, and momentum.

As an attempt at an explanation of the above situation, Bohr put
forward the principle of complementarity, in which he postulated that
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an electron cannot exhibit both wave and particle properties simul-
taneously, but that these properties are in fact complementary de-
scriptions of the behavior of electrons.

A consequence of the apparently dual nature of an electron is the
uncertainty principle, developed by Werner Heisenberg. The essential
idea of the uncertainty principle is that it is impossible to specify at
any given moment both the position and the momentum of an elec-
tron. The lower limit of this uncertainty is Planck’s constant
divided by 4r. In equational form,

ApIB0) > - a3

Here Ap, is the uncertainty in the momentum and Ax is the uncer-
tainty in the position. Thus, at any instant, the more accurately it
is possible to measure the momentum of an electron, the more un-
certain the exact position becomes. The uncertainty principle means
that we cannot think of an electron as traveling around from point
to point, with a certain momentum at each point. Rather we are
forced to consider the electron as having only a certain probability
of being found at each fixed point in space. We must also realize that
it is not possible to measure simultaneously, and to any desired accu-
racy, the physical quantities that would allow us to decide whether
the electron is a particle or a wave. We thus carry forth the idea that
the electron 1s both a particle and a wave.

1-7 THE WAVE FUNCTION

Since an electron has wave properties, it is described as a wave func-
tion, ¥ or Y(x,9,3), the latter meaning that ¢ is a function of coordi-
nates x,%, and g.  The wave function can take on positive, negative,
or imaginary values. The probability of finding an electron in any
volume element in space is proportional to the square of the absolute
value of the wave function, integrated over that volume of space.
This is the physical significance of the wave function. Measurements
we make of electronic charge density, then, should be related to |2,
not ¢. Expressed as an equation, we have

probability (x,7,2) o W(x,y,2)? (1-39)
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By way of further explanation, it should be noted that the prob-
ability of finding an electron in any volume element must be real and
positive, and |Y[? always satisfies this requirement.

1-8 THE SCHRODINGER WAVE EQUATION

In 1926, the Austrian physicist Erwin Schrodinger presented the
equation relating the energy of a system to the wave motion. The
Schridinger equation is commonly written in the form

ey = B -35)
where 3C is an operator called the Hamiltonian operator (after the
English physicist Hamilton) and represents the general form of the
kinetic and potential energies of the system; E is the numerical value
of the energy for any particular ¥. The wave funcrions that give
solutions to Eq. (1-35) ate called ¢igenfunctions; the energies E that
result from the solutions are called eigenvalues.

The Schridinger equation is a complicated differential equation
and is capable of exact solution only for very simple systems. Fortu-
nately, one of these systems is the hydrogen atom.

The solution of the Schroédinger equation for the hydrogen atom
yields wave functions of the general form

im, = INTTRui)] [, (525)] (1-36)
We shall now attempt to explain the parts of Eq. (1-36).

1-9 THE NORMALIZATION CONSTANT
In Eq. (1-36), N is a normaligation constant, fixed so that

[ Wpdxdydz=1 137

That is, the probability of finding the electron somewhere in space
mast be unity.

1-10 THE RADIAL PART OF THE WAVE FUNCTION

Ru(r) is the radial part of the wave function. The value of
[R.i(7) |2 gives the probability of finding the electron any distance »
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from the nucleus. The two quantum numbers # and / are associated
- with the radial part of the wave function: # is called the principal
quantum number and defines the mean radius for the electron; Ypm, can
only be an eigenfunction forn =-1,2,3... integers. /is the quantum
number which specifies the angular momentum of the electron; Ypum,
can only be an cigenfunction for / =0,1,2,3, . . . torn — L.

1-11 THE ANGULAR PART OF THE WAVE FUNCTION

i, (x/r,3/r,%/r) is the angular part of the wave function. The
quantum pumbers / and m; are associated with the angular part of
the wave function. m, is called the magnetic quantum number and de-
fines the possible values for the z-axis component of the angular
momentum of the electron in a magnetic field. Y, can only be
an cigenfunction for my = +/,/—1,/— 2, . . . to —/.

1-12 ORBITALS

The hydrogen eigenfunctions Y,m, are commonly called orbitals.
The orbitals for the hydrogen atom are classified according to their
angular distribution, or / value. Each different / value is assigned a
letter:

! = 01is an s orbital.
! = 1lisa p orbital.
! = 2is a d orbital.
! = 3 is an f orbital.

The letters s, p, d, and f are taken from spectroscopic notation. For
[ = 4 or more, alphabetical order is followed, omitting only the
letter j. Thus, / = 4is'a g orbital, I = 5 is an b orbital, etc.

An orbital is completely specified in this shorthand notation by
adding the » and m; values. The 7 value goes in front of the letter for
the / value. The m; value 1s indicated as a subscript, the total short-
hand being #/,,. Now for m; # 0, the #nl,, orbitals are imaginary
functions. It is usually more convenient to deal with an equivalent
set of real functions, which are linear combinations of these #/u,
functions. The shorthand for the real hydrogen orbitals is again nl;
the added subscript now gives the angular dependency. The com-

plete set of real orbitals for hydrogen through » = 3 is given in
Table 1-1.
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Table 1-1

5

Important Orbitals for the Hydrogen Atom®

Orbilal quaniwm  Orbital Angulay function,©
numbers desig- Radial function,b o, (%,3 %
n 1 my nation Ry (7) l"’z(r’ r’ 1’)
1 06 0 1s 2e"7 !
2V
2 0 0 2 2—% (r— 2)e "% —2—\%
2 1 (¢ 2, ZL% re-"h ﬁ—z‘fﬂ?@
2 1 0 2, z—lfa vo-Th ‘/gz(—zﬁ/”
2 1 (nd  2p §_1¢_€ e~ ﬁz(y?/’)
2 1
3 0 0 3s A (27 — 18% + 2r®)e~ s 5
301 (M 3y it —6ne Bl
3 1 0 3p, 814%, (2 — 8)e-"s ﬁ—z(%f—)
301 (i 3p, 314 & (2 —6r)e” —Lz( 3’?/7)
d 4 Loy V15 [(x% = y3)/7*]
3 2 (2) 3dx"’——y2 sT/as e ————7=£—'——4 =
2
3 2 (D4 3d, 314 5rie @——02%%@
2 _ 2 /2
3 2 0 3d,, —7?5814 r2e~"s BBz rh/r) [(3Z4ﬁ’ /7]
2
32 CD s, gt REIC I
2
32 (20 34, grgprie V35 ey /)

2noth the radial and the angular functions are normalized to one; » is in atomic
units (that is, in units of ay; see problem 1-1).
bTo convert to a general radial function for a one-electron atom with any nuclear

charge Z, replace v by Z» and multiply each function by (zyr,

®Often expressed in the spherical coordinates 6 and ¢ by replacing x with # sin 0 X
cos ¢, y with ¥ sin 6 sin ¢, and z with » cos 0.
d1t is not correct to assign mj values to the real functions x, y, x - yz, X2, Y&,

and xy.
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It is common practice to make drawings of the hydrogen orbitals,
outlining the region within which there is a large probability for
finding the electron. Remember that the electronic density in an
orbital is related to the square of the absolute value of the wave function.
Keep this in mind when you encounter dual-purpose drawings of the
boundary sutfaces of orbitals, which outline 90 per cent, say, of [¢|?,
and also indicate the + and — signs on the lobes given by the angular
part of . The boundary-surface pictures are very useful and should
be memorized. The boundary surfaces for s, p, 4, and f orbitals are
given in Figs. 1-3, 1-4, 1-5, and 1-6, along with radial-distribution
graphs for the different orbitals.

(a) s orbital

1s 2s 3s

PN (D

node

nodes

)
Figure 1-3 (a) Boundary surface of an s orbital. (b) Plots
of the radial function R(r) vs. r for 1s, 2s, and 3s orbitals. The
2s radial function changes sign as r increases. Thus there is a
point where R(r) = 0 for the 2s radial function. Such a zero
point is called a node. The 3s radial function has two nodes.



Electrons in Atoms 17

y

p, orbital ., orbital
g
@ p, orbital
R(7) 2p 3p
’ \/\
node
)

Figure 1-4 (a) Boundary surfaces of the p orbitals. (b) Plots
of the radial function R(r) vs. r for 2p and 3p orbitals. The 3p
orbital has one node, as indicated.

1-13 ELECTRON SPIN
The three quantum numbers 7, /, and 7, are all associated with the
movement of the electron around the nucleus of the hydrogen atom.
In order to explain certain precise spectral observations, Goudsmit
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Az

d,, orbital d_, orbital d,, orbital

f \

d,, orbital d,._, orbital

()

3d

R(r)

(%) G
Figure 1-5 (a) Boundary surfaces of the d orbitals. (b) Plot
of R(r) vs. r for a 3d orbital.
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6 (a) Boundary surfaces of the f orbitals.

vs. r for a 4f orbital.

(2)
Figure 1-
of R(r)

(b) Plot
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and Uhlenbeck (1925) introduced the idea of electron spin (this is
analogous to the earth spinning about its own axis while moving in
an orbit around the sun). The spin of an electron is quantized in
half-integer units, and two more quantum numbers, s and ., are
added to our collection: s is called the spin quantum number and equals
%; ms is related to s in the same way that »; is related to [ and equals
+3.

1-14 THE THEORY OF MANY-ELECTRON ATOMS

It has not been possible to solve the Schrédinger equation exactly
for atoms with two or more electrons. Although the orbitals for a
many-electron atom are not quite the same as the hydrogen orbitals,
we do expect the number of orbitals and their angular dependencies
to be the same. Thus the hydrogen orbitals are used to describe the
electronic structure of an atom with more than one electron. The
procedure is simply to assign to each electron in the atom a set of the
four quantum numbers #, [, #2y, and m; (s is always }), remembering
that no two electrons can have the same four quantum numbers. This is a
statement of the Pauli principle.

What we actually do, then, is to fill up the hydrogen orbitals with
the proper number of electrons for the atom under consideration (the
anfbaun, or building up, principle). One electron can be placed in each
orbital. Since an electron can have »z, equal to +3% or —%, two elec-
trons may have the same orbital quantum numbers. The total num-
ber of electrons that the different orbital sets can accommodate is
given in Table 1-2.

The s, p, d, f, etc., orbital sets usually are called swbshells. The
group of subshells for any given » value is called a shell.

The ground-state electronic configuration of a many-electron atom
is of greatest interest. In order to determine the ground state of a
many-electron atom the orbital sets are filled up in order of increasing
energy until all the electrons have been accommodated. We know
from experimental observations that the order of increasing energy
of the orbital sets in many-electron neutral atoms is 1s, 25, 2p, 3+, 3p,
45, 3d, 4p, 55, 4d, 5p, Gs, 4f, 54, 6p, s, 5f ~ 6d. A diagram showing
the energies of the orbitals in neutral atoms is given in Fig. 1-7.
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Table 1-2
The s, ¢, d, and f Orbital Sets

21

Total numbeyr

Type Total of electrons
of Orbital orbitals that can be
orbilal quanium numbers in set  accommodated
s [=0;m;=20 1 2
p 1=1;m;=1,0-1 3 6
d I=2;m;=21,0-1,-2 5 10
f 1=3;m;=23,210-1-2-3 7 14

high energy
/ d
f d 14
) e ‘_:_"
1 4 e
s ORI §
PR
e K3
&
g ?
w d R
A B
L
?7
5
low energy 5
7 = 1 2 3 4 3 6 7

Figure 1~7 Relative energies of the orbitals in neutral atoms.
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1-15 RUSSELL-SAUNDERS TERMS

It is convenient to classify an atomic state in terms of total orbital
angular momentum L and total spin § (capital letters always are used
for systems of electrons; small letters are reserved for individual elec-
trons). This Russell-Saunders LSM;Ms scheme will now be de-
scribed in detail.

For a system of # electrons, we define

Mz =y + m, + m, + -+, (1-38%)
Ms = my + my, + me, + - -+ m, (1-39)
We also have these relationships between L and My, § and Mg:
My=IL,L—1,L—2-,—L (1-40)
Ms=8, 8§ —1,8§—2,--,—§ (1-41)

Let us take the lithium atom as an illustrative example. The
atomic number (the number of protons or electrons in the neutral atom)
of lithium is 3. Therefore the orbital electronic configuration of the
ground state is (15)%(25)'. The ground-state LSM Mg term is found
as follows:

1. Find the possible values of My.

Mr = my + iy, + myy

ey = my, = my, = 0 (all are s electrons)
Mz =0
2. Find the possible values of L.
ML = O
L=90

3. Find the possible values of Ms.
Mg = sy~ Wley = Wty

— 1 —_ i — i
ms, = +3, My = 73, msy = £3
—_ 1 1
Mg = ‘I‘i or —3

4. Find the possible values of §.

Ms=+3%, —3
S=1
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A Russell-Saunders term is written in the shorthand notation ?St1L.
The superscript 28 + 1 gives the number of different M values of any
state, often referred to as the spin multiplicity. As in the single-elec-
tron-orbital shorthand, letters are used for L. (L= 0is8§; L = 11is
P, L=2isD;L=73isF; etc.) For the lithium atom, the ground-
state term has L = Oand § = 3, designated 25. An excited electronic
configuration for lithium would be (15*(2p)t. For this configura-
tion, we find M, = 1,0, —1(L = 1) and Mg = 4=3(§ = 3). There-
fore the term designation of this particular excited state is 2P.

Admittedly the lithium atom is a very simple case. To find the
term designations of the ground state and excited states for more
complicated electronic structures, it helps to construct a chart of the
possible My and Mg values. This more general procedure may be
illustrated with the carbon atom. The carbon atom has six elec-
trons. Thus the orbital configuration of the ground state must be
(s 2(25%(2p . It remains for us to find the correct ground-state
term.

First a chart is drawn as shown in Fig. 1-84, placing the possible
values of My, in the left-hand column and the possible values of Mg
in the top row. We need consider only the electrons in incompletely
filled subshells. Filled shells or subshells may be ignored in con-
structing such a chart since they always give a contribution Mz =
O(L = 0) and Mg = 0(§ = 0). (Convince yourself of this before
proceeding.) For carbon the configuration (2p)? is important. Each
of the two p electrons has ] = 1 and can therefore have m; = +1, 0,
or —1. Thus the values possible for My, range from +2 to —2.

Each of the two p electrons can have m, = +3 or —3%. Thus the
values possible for Mg are 1, 0, and —1.

The next step is to write down all the allowable combinations
(called microstates) of my and ms, values for the two p electrons and to
place these microstates in their proper Mz, Mg boxes. The general
form for these microstates is

<mslm32 cee msn> + stands for mz, = 43

mymy, -, — stands for m, = —3%

The microstate that fits in the My = 2, Mg = 1 box s (1, i) How-
ever, since for both the 2p electrons under consideration » = 2 and



24 Electrons and Chemical Bonding

~Ms 1 0 -1
2 a1
1 w | @0 @b 10)
0 d-h | ¢ D G
(0,0)
-1 10 | (<10 =16 | (=10
-2 ’ (-1-1)
(a)
M, My 1 0 -1
2
1
0
-1
—2

(%)
Figure 1-8 (a) M5, Mg microstate chart for the (2p)? orbital
configuration. (b) My, Mg microstate chart for the (2p)?
orbital configuration; the 3P term has been eliminated by
crossing out the six microstates in the Mg = 1 and Mg = —1
columns and, randomly; three microstates with Mz equal to
1, 0, and —1 in the Mg = 0 column.

/=1, this microstate is not allowable according to the Pauli prin-
ciple and is crossed out in Fig. 1-84.

Proceeding to the Mz = 1, Mg = 1 box, the microstate (i, 6)
fits and is allowable. The two electrons may both have m; = +1
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and therefore My = 2 if their m, values differ. Thus the microstate
, 1) is allowable and fits in the Mz, = 2, Mg = 0 box. This pro-
cedure is followed until the chart is completed.

From the completed chart the 4L terms may be written down.
Start at top left on the chart. There is a microstate with Mz = 1,
Mg = 1. This microstate may be considered the parent of a state
thathas L = 1, § = 1, or °P. From Eqgs. (1-40) and (1-41), we see
that a term with L = 1 and § = 1 has all possible combinations of
My = 1,0,—1 and Mg = 1,0,—1. Therefore, a P state must have,
in addition to the Mz = 1, Mg = 1 microstate, microstates with
ML=O, Ms=1;ML= —l,Msz l;ML= l,M,g:O;ML:O,
Msg=0;,Mpr=—1, Mg=0;, Mr =1, Mg= —1; My =0, Mg =
—1; My, = —1, Ms = —1. Thus a total of nine microstates are ac-
counted for by the *P term. Subtracting these nine microstates from
the chart, we are left with a new puzzle, as shown in Fig. 1-84.

Moving across the top row, there is a microstate with My = 2,
Mg = 0, which may be considered the parent of a state that has
L=2,8§=0,or'D. The!D state also must have microstates My =
].,Ms = O;ML = O,Ms - O;ML = —].,Ms = O;ML = —-2,Ms =
0. Subtracting these five combinations of the D state, we are left
with a single microstate in the My = 0, Mg = 0 box. This micro-
state indicates that there is a term having L = 0, § = 0, or 1§

We now have the three terms, P, 1D, and 1§, which account for all
the allowable microstates arising from the (2p)? electronic configura-
tion. The ground-state term always has maximum spin multi-
plicity. This is Hund’s first rule. Therefore, for the carbon atom,
the 3P term is‘the ground state.

The D and 1§ terms are excited states having the (2p)? orbital
electronic configuration. Hund's second rule says that, when com-
paring two states of the same spin multiplicity, the state with the
higher value of L is usually more stable. This is the case with the
1D and 1S terms for the carbon atom, since the 1D state is more stable
than the 1§ state.

PROBLEMS

1-6. Work out the ground-state and excited-state terms for the
most stable orbital electronic configuration of the titanium atotn.
Solurion. The atomic number of titanium is 22. Thus the most
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stable orbital electronic configuration is (1525223 2(3p)¢
(4534 2. The only incompletely filled subshell is 34.

Examine Table 1-3, the My, Mg chart for the (34)? configuration.

The (5, i) microstate is the parent of a °F term. The 3F term

Table 1-3
Values of My, Mg for (3d)° Configuration
" MS
My 1 0 -1
+ -
4 (2,2)
+ ot s + - —+ - —
3 (2,1) (2,1)(2,1) (2,1)
+ + - =t - ——
2 | (2,0 (2,0)2,0(1,1) (2,0)
++ + + + - =+ e
1 (1,0X(2~1) (1,0X1,0) (1,0X(2,-1)
+ -~ o+
+ + + + B
—_— ot -
(1;‘1)(0;0)
++ + o+ - -+ == =
-1 (~1,0X(1,-2) (-=1,0)(-1,0) (=1,0(1,-2)
+ — —
+ + - =t = ——
+ o+ + - =+ R
~3 (-2,-1) (=2,-1)%-2,-1) (-2,-1)
4+ -
—4 (-2, 2)
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accounts for 21 microstates. Starting at the My = 1, Ms = 1 box,
there are two microstates. Thus there also must be a *P term. The
(i, 2) microstate is the parent of a 'G term. The terms D and 1§
account for the remaining microstates in the Mg = 0 column.

The ground-state terin has maximum spin multiplicity and must
be either 3F or 3P. The *F state has the higher angular momentum
(L = 3) and is predicted to be the ground state. The3F term is the
experimentally observed ground state for the titanium atom. The
3P state is the first excited state, with the G, 1D, and 1§ states more
unstable.

1-7. Using Table 1-4, work out the terms arising from the orbital

electronic configuration (34)'(44)', and designate the most stable
state.
Solution. The (34)'(4d)" problem is slightly different from the (34)?
problem. Both electrons are d electrons with / = 2, but one has
n = 3 and one has # = 4. Thus, for example, the (E, i) micro-
state does not violate the Pauli principle, since the » quantum num-
bers differ. The bookkeeping is simplified by adding a subscript
4 to the mz; value for the 44 electron.

The terms deduced from the chart for the (34)'(44)! configuration
are *G, 3F, 3D, 3P, 3§, 'G, 'F, 'D, P, and 1§. Following the spin-
multiplicity and angular-momentum rules, the 3G state should be
most stable.

1-16 1ONIZATION POTENTIALS

The ionization potential (abbreviated IP) of an atom is the mini-
. 4
mum energy required to completely remove an electron from the
atom. This process may be written

atom + IP(energy) — unipositive ion 4+ electron  (1-42)

Further ionizations are possible for all atoms but hydrogen. In
general, the ionization energy required to detach the first electron is
called 1Py, and subsequent ionizations require IP,, 1P;, IPs, etc.
Quite obviously, for any atom there are exactly as many IP’s as
electrons.

The first ionization potentials for most of the atoms are given in
Table 1-5. For any atom, the IP; is always the smallest IP. This
is understandable since removal of a negatively charged particle



Table 1-4
Values of My, Mg for (34)* (4d)* Configuration

Mg
1 0 -1
+ + +—  —+ —
(2,2,) (2,2,)(2,2,) (2,2,)
+ 4+ o+ 4+ +— —+ —
(2,15)(2,,1) (2,1)(2,1,) (2,1,)(2,,1)
- -
(2,,12,,1)
+ 4+ o+ o+ +— -+ o+ = ——
(2,0,)(2,,0) (2,0,)(2,0,)(2,,0) (2,0,)(2,,0)
+ + -+ e+ ——
1,1,) (2,,0)(1,1,)(1,1,) (1,1,)
++ o+ 4+ + = et -
(1,0,)(1,,0) (1,0, )(1,0,)(1,,0) (1,0,)(1
+ o+ o+ + — + + - -+ [
2,-1)@2,,-1) | (1,,002,-1,),-1,) 2,1,
+ R +
(24, -1)2,,-1)
+ o+ o+ + - -+ o+ — - -
(1,-1,)(1,,-1) (1,-1,)(1,~1,)(1,,~1) (1,-1,)(1,,
+ o+ o+ + — N — e = —
(2,-2,)(2,,-2) | (1,-1)(2,-2,)(2,-2,) | (2,-2,)(2,,-2)
+ + + - o — [
(0,0,) (2,,-2)(2,,-2)(0,0,)0,0,) | (0,0,)
+ + + o+ + - —+ +— o
(_1;04)(”‘14;0) (”1; 4)("1,04)(—14,0) (‘_1;04)(‘_
+ + + + T —+ —
-2,1,)(-2,,1) -1,,00-2,1,)(-2,1,) 2,1,
o= = 4
(-2,,1)(=2,,1)
+ + + o -+ + - ——
(~2,0,)(-2,,0) (-2,0,)(-2,0,)(-2,,0) (-2,0,)(-2
+ o+ -+ o+ = -
~1,-1,) -2,,00-1,-1,) 1,-1,)
-+
(-1,-1,)
+ o+ + + + = - -
2,-1,)2,,-1) | 2,-1,)(-2,-1,) -2,
+ [ — +
-2, -12,,-1)
+ o+ + - R —
-2,-2,) “2,-2,)(-2,-2,) -2,-




Electrons in Atoms 29

Table 1-5
The Electronic Configurations and Ionization Potentials of Atoms

Ground
Orbital electronic state
z Atom (4) configuration term IPy, ev?®
1 H 1s 2S5 13.595
2 He 1 's 24.580
3 Li [He]2s s 5.390
4 Be [He]2s® 's 9.320
5 B [Hel2s*2p Zp 8.296
6 C [He]2s*2p? °p 11.264
7 N [He]2s’2p° s 14.54
8 o [He|2s* 2p* ’p 13.614
9 F [He]2s%2p° ip 17.42
10 Ne [He]2s®2p° 's 21.559
11 Na [Ne]3s i 5.138
12 Mg [Ne|3s® 's 7.644
13 Al [Ne]3s’3p zp 5.984
14 Si [Ne]3s®3p® 'p 8.149
15 P Ne|3s®3p° S 11.0
16 S [Ne]3s®3p* ip 10.357
17 Cl Nel3s®3p° ’p 13.01
18 Ar Ne|3s®3p° 's 15.755
19 K [Ar]4s 25 4.339
20. Ca [Ar]4s 'S 6.111
21 Sec [Ar]4s°3d D 6.56
.22 Ti [Ar]4s® 34° F 6.83
23 v [Ar]4s*34° °F 6.74
24 Cr [Ar]4s 34d° 'S 6.763
25 Mn [Ar]4s®3d°® &S 7.432
26 Fe [Ar]4s°34° D 7.90
27 Co [Ar]4s®3d’ o 7.86
28 N [Ar]as?34° S 7.633
29 Cu [Ar]4s 34" %S 7.724
30 Zn [Ar]4s®34™ 'S 9.391
31 Ga [Ar|4s*3d*°4p ’p 6.00
32 Ge [Ar]4s°3d™ 4p° ’p 7.88
33 As [Ar]|4s°3d'°4p° S 9.81
34 Se [Ar|4s®34d"°4p* ’p 9.75
35 Br [Ar]4s®34'°4p° tp 11.84

{continued)
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Table 1-5 (continued)
Ground
Orbital electrvonic state
A Atom (A) configuration term P, eV
36 Kr [Ar]4s*3d'4p° 'S 13.996
37 Rb [Kr]5s %S 4.176
38 Sr [Kr]5s 'S 5.692
39 Y [Kr]55°4d D 6.5
40 Zr [Kr|55*4d° °F 6.95
41 Nb [Kr]5s 4d* °D 6.77
42 Mo Kr]5s 4d° 'S 7.10
43 Tc Kr|55°4d° es 7.28
44 Ru [Kri5s 44’ °F 7.364
45 Rh Kri5s 44d° ‘F 7.46
46 Pd Kr]4d*° 'S 8.33
47 Ag Kr]5s 4d™° g 7.574
48 Cd [Kr]5s°44" 's 8.991
49 In [Kr]55°4d™°5p ’p 5.785
50 Sn Kr|5s°44d'%5p° ’p 7.342
51 Sb Kr]55°4d*°5p° S 8.639
52 Te [Kr]55°44'°5p* ’p 9.01
53 I [Kr]55°4d*5p° :p 10.454
54 Xe Kr|55° 44" 5p° 's 12.127
55 Cs Xel6s S 3.893
56 Ba Xe]6 s” 'S 5.210
57 La Xel6s"5d D 5.61
58 Ce Xel6s°4f 5d *H 6.91b
59 Pr Xel6s*4f° *1 5.76°
60 Nd Xel6s4f* 51 6.31P
61 Pm Xel6s*41° °H
62 Sm Xel6s?4f° 3 5.60
63 Eu Xel6s®4f’ 'S 5.67P
64 Gd Xel6s*4f"54 °D 6.16°
65 Tb Xel6s24f°%2 SH 6.74b
66 Dy Xe|6s”4f*° °1 6.82°
67 Ho Xel6s*4f " *1
68 Er el 4f il 6.08°
69 Tm el6s®4f ' 2F 5.814
70 b eles?4f** s 6.20
71 Lu el6s°4f*5d D 5.0P
72 Hf el6s*4f 54" °F

(continued)
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Table 1-5 (continued)

Ground
Ovbilal electvonic state

VA Atom (4) configuration term P, eV
73 Ta [Xel6 47 54° °F 7.88
74 \% [Xel6s®4f 54" D 7.98
75 Re [Xel6s®4f 54 °S 7.87
76 Os [Xe]6324f“5d6 D 8.7
77 Ir [Xe|6s 45 5d" “F 9
78 Pt [Xel6s?4f 54>~ *D 9.0
79 Au [Xe]6s 4f 54" %S 9.22
80 Hg [Xel6s*4f 54" 's 10.43
81 Tl [Xel6s®4f 546 p ép 6.106
82 Pb [Xel6s*4f*54'°6p° °p 7.415
83 Bi [Xe]6s*4f 546 p° S 7.287
84 Po [Xel6s®4f 546" °p 8.43
85 At [Xel6s®4f 54" 6p° ’p
86 Rn [Xel6s*4f 54" 5p° 'S 10.746
87 Fr [Rn]7s 25
88 Ra [Rn]7s® 'S 5.2717
89 Ac ' [Rn]7s°64d D
90 Th [Rn]7 5" 6d° °F 6.95°
91 Pa |Rn]7s°57%6d ‘K
92 U [Rn|7s°57°%6d °L 6.1°
93 Np [Rn]7s°57%6d °L
94 Pu [Rn|7s%5° ga 5.1°
95 Am [Rn]7s%5f" i) 6.0%

96 Cm Rn|7s°5f76d °D
97 Bk [Rn]7s°5/° °H
98 Ct [Rn]7s*5f 51
99 Es [Rn]7s°5f " I

100 Fm [Rn]7s*55*2 °H

101 Md [Rn]7s*57 " °F

102 No [Rn]7s%5/ 'S

103 Lw [Rn]7s°5f6d 2D

&From C. E. Moore, ‘“Atomic Energy Levels,’”’ NBS Civculayv 467, 1949,
1952, and 1958, except as indicated.

bT. Moeller, The Chemistry of the Lanthanides, Reinhold, New York,
1963, p. 37.

°N. I. Ionov and M. A. Mitsev, Zhur. Eksptl. i Theoret. Fiz., 40, 741(1961).

dJ Blaise and R, Vetter, Compt. Rend., 266, 630 (1963).

¢K. F. Zmbov, Bull. Bovis Kidvich Inst. Nucl. Sci., 13, 17 (1962).

fR.H.U.M. Dawton and K. L. Wilkinson, Atomic Energy Researvch Estab.
(Gt. Brit.), GR/R, 1906 (1956).

M. Fred and F. S. Tompkins, J. Opt. Soc. Am., 47, 1076 (1957).
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from a neutral atom is easier than its removal from a positively
charged ion.

In any column in the periodic table, the IP’s decrease as the atomic
number increases. Let us examine, for example, the Li and Cs atoms.
Lithium, which has IP; = 5.390 eV, has the electronic configuration
[Hel2s. Cesium, with IP; = 3.893 eV, has the structure [Xe]6s.
The 2s electron in Li spends much more time near the nucleus than
the 65 electron does in Cs. This means that the net attraction be-
tween the electron and Z.ss, the shielded nuclear charge, is substan-
tially larger for the Li 2s electron than for the Cs 65 electron, a fact
that is illustrated in Fig. 1-9.

In any row in the periodic table, the IP’s generally increase from
left to right, being smallest for the alkali metal atoms and largest for
the inert gas atoms. There are irregularities, however, since atoms

2s

shielding due to 1s* electrons in Li

shielding due to 1522522p93523p%4523d'°4 9552445 p° electrons

)
Figure 1-9 Ionization of an electron from (a) a lithium atom
and (b) a cesium atom.
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with filled or half-filled subshells have larger IP’s than might be
expected. For example, Be([He]2s*) has IP;= 9.320 ¢V and
B([He]2s22p") has IP; = 8.296 ¢V; N([He]2522p%) has IP; = 14.54 eV
and O([He]2s?2p*) has IP; = 13.614 ¢V. The steady if slightly ir-
regular increase in IP’s from Li (IP; = 5.390 eV) to Ne (IP; = 21.559
eV) is due to the steady increase in Zes observed between Li and Ne.
The electrons added from Li to Ne all enter 25 and 2p orbitals and are
not able to completely shield each other from the increasing nuclear
charge.

The variation of the ionization potential of atoms with atomic
number is shown in Fig. 1-10.

1-17 ELECTRON AFFINITIES .

The electron affinity (abbreviated EA) of an atom is the energy
released (or needed, if the atom has a negative EA) when the atom

25 He
Ne
20 first transition series
Ar i ) ) . ]
15 Kr second transition series third transition series
H Xe :
Hg Rn
10

4 Na K Rb Cs lanthanides
L L T E 1 1 1 1 _—|
0 10 20 30 40 50 60 70 80

atomic number

Figure 1-10 Variation of atomic ionization potential with
atomic number.
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adds an extra electron to give a negative ion. Thus we have the
equation

atom - electron — uninegative ion + EA(energy) (1-43)

Table 1-6

Atomic Electron Affinities

Ovbital electronic Ovbital electronic
Atom (A) configuration EA, eV configuration of A

H 0.747*  He

F [He]zs 2p 3.45P Ne

C1 [Ne|3s*3p° 3.61P Ar

Br [Ar|4s®3d'°4p® 3.36° Kr

I Kr]SS 4d“’5f>5 3.06b Xe

0] "He]zs 2p* 1.47°  [He]2s°2p°

S Ne|3s*3p* 2.074 [Ne]3s°3p°

Se jAr]4s 3d“’4p (1.7)° [Ar]4s® 34" 4p°

Te [Kr]5s* 44" 5p* (2.2)° [Kr]5s°4d*°5p°

N jHe]zs 2p° -0.1)f [He]2& 2p*

P Nel3s®3p° 0.7  [Ne]3s?3p*

As [Ar]4s? 3d1°4p (0.6)" [Ar]as*34d'°4p*

c [He]2s*2p" 1.25%  [He]2s"2p°

Si [Ne]3s?3p? (1.63)"  [Ne]3s?3p°

Ge [Ar]4s*3d'°4p® (1.2)f [Ar]4s*3a'°4p®

B [He]2s%2p (0.2)* [He]2s" 2p®

Al [Ne]382317 (0.6)° [Ne]3s®3p®

Ga [Ar]4s®3d*°4p (0.18)"  [Ar]4s®3a'°4p?

in [Kr]Ss 44"°s5p {0.2)f [Kr]5s®4d™5p®

Be [He]2s (~0.6)* [He]2s*2p

Mg [Ne]3s -0.3)" [Ne|3s*3p

Li [He]2s (0.54)"  [He]2s?

Na [Ne]3s (0.74)%  [Ne]3s?

Zn [Ar]4s 34" (-0.9)f [Ar]4s®3d™°4p

Cd [Kr]5s°4d" (~0.6)! [Kr|5s24d™°5p
8H. A. Skinner and H. O. Pritchard, Tvans. Faraday Soc., 49, 1254 (1953).
br. s, Berry and C. W. Riemann, J, Chem. Phys., 38, 1540 (1963).
°L. M. Branscomb, Nafure, 182, 248 (1958).
d1.. M. Branscomb and S. J. Smith, J. Chem. Phys., 25, 598 (1956).
€H. O. Pritchard, Chem. Revs., 52, 529 (1953).
fA. P. Ginsburg and J. M. Miller, J. Inorg. Nucl. Chem., 7, 351 (1958).
8M. L. Seman and L. M. Branscomb, Phys. Rev., 125, 1602 (1962).



Electrons wn Atoms 15

Unfortunately, as a result of certain experimental difhiculties, very
few EA values are precisely known. A representative list is given in
Table 1-6.

The halogen atoms have relatively large EA’s, since the resulting
halide ions have a stable filled-shell electronic configuration. Atoms
with filled subshells often have negative EA values. Good examples
are Be, Mg, and Zn.

It is interesting to note that the atoms in the nitrogen family, with
the electronic configuration s2p*(4S"), have very small EA’s. Thus we
have additional evidence for the greater stability of a half-filled sub-
shell.

SUPPLEMENTARY PROBLEMS

1(#). Compare the velocity and radius of an electron in the fourth
Bohr orbit with the velocity and radius of an electron in the first
Bohr orbit; (4) Derive the expression, dependent only on the variable
n, for the velocity of an electron in a Bohr orbit.

2. Calculate the energy of an electron in the Bohr orbit with# = 3.

3. Calculate the second ionization potential of He.

4. Calculate the frequencies of the first three lines in the Lyman
series (the lowest-frequency lines).

5. The Balmer series in the spectrum of the hydrogen atom arises
from transitions from higher levels to » = 2. Find which of the
Balmer lines fall in the visible region of the spectrum (visible light
wavelengths are between 4000 and 7000 A).

6. Following the Pauli principle and Hund's first rule, give the
orbital configuration and the number of unpaired electrons in the
ground state for the following atoms: (a) N; (b) S; (¢) Ca; (d) Fe;
(e) Br.

7. Find the terms for the following orbital configurations, and
in each case designate the term of lowest enetgy: (a) 2s; (b) 2p%
(€ 2p°35; (4D 2p3p; (& 2p3d; (£ 34%; (g 3d%; (h) 34%; (1) 254f; (1D 2p%;
(k) 3d%4s.

8. Find the ground-state term for the following atoms: (a) Si;
(b) Mn; (c) Rb; (d) Ni.
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2-1 COVALENT BONDING

molecule is any stable combination of more than one atom.

The simplest neutral molecule is a combination of two hydro-

gen atoms, which we call the hydrogen molecule or H,. The H,

molecule is homonuclear, since both atomic nuclei used in forming the
molecule are the same.

The forces that hold two hydrogen atoms together in the H,
molecule are described collectively by the word bond. We know this
bond to be quite strong, since at ordinary temperatures hydrogen
exists in the form Hs, not H atoms. Only at very high tempera-
tures is Hy broken up into its H atom components. Let us try to
visualize the bonding in H, by allowing two hydrogen atoms to ap-
proach each other, as illustrated in Fig. 2-1. When the atoms are at
close range, two electrostatic forces become important: first, the
attraction between the nucleus H, and the electron associated with
15, as well as that between the nucleus H; and the electron associated
with 1s,; and second, the repulsion between H, and H; as well as that
between 1s, and 1.

The attractive term is more important at large H,~H, distances,
but the situation changes as the two atoms come closer together, the
importance of the H~H, repulsion increasing as internuclear dis-
tances become very short. This state of affairs is described by an

36
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Figure 2-1 Schematic drawing of two hydrogen atoms ap-
proaching each other.

energy curve such as that shown in Fig. 2-2. The energy of the
system falls until the H,—Hj repulsion at very short ranges forces
the energy back up again. The minimum in the curve gives both
the most stable internuclear separation in the Hy molecule and its gain
in stability over two isolated H atoms.

One of the early successful pictures of a chemical bond involving
electrons and nuclei resulted from the work of the American physical
chemist, G. N. Lewis. Lewis formulated the electron-pair bond, in
which the combining atoms tend to associate themselves with just
enough electrons to achieve an inert-gas electronic configuration.
The hydrogen molecule is, in the Lewis theory, held together by an
electron-pair bond (Fig. 2-3). Each hydrogen has the same partial
claim to the electron pair and thus achieves the stable 1s2 helium
configuration. A bond in which the electrons are equally shared by
the participating nuclei is called a covalent bond.

The remainder of this book will be devoted to the modern ideas
of bonding in several important classes of molecules. The emphasis
will be on the molecular-orbital theory, with comparisons made
from time to time to the valence-bond theory. Of the many scientists
involved in the development of these theories, the names of R. S.
Mulliken (molecular-orbital theory) and Linus Pauling (valence-
bond theory) are particularly outstanding.
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high energy
A

energy
(==}

low energy

>

“separated atoms’

R=0
increasing R

Figure 2-2 Energy of a system of two hydrogen atoms as
a function of internuclear separation.

2-2 MOLECULAR-ORBITAL THEORY

According to molecular-orbital theory, electrons in molecules are
in orbitals that may be associated with several nuclei. Molecular
orbizals in their simplest approximate form are considered to be linear
combinations of atomic orbitals. We assume that when an electron in a
molecule is near one particular nucleus, the molecular wave function
is approximately an atomic orbital centered at that nucleus. This
means that we can form molecular orbitals by simply adding and
subtracting appropriate atomic orbitals. The method is usually ab-
breviated LCAO-MO, which stands for linear combination of atomic
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electron-pair bond

Figure 2-3 Electron-pair bond in the hydrogen molecule.

orbitals—molecular orbitals. We shall use the abbreviation MO in this
text for a molecular orbital.

Atomic orbitals that are in the proper stability range to be used in
bonding are called valence orbitals. The valence orbitals of an atom
are those that have accepted electrons since the last inert gas and, in
addition, any others in the stability range of the orbitals that will
be encountered before the next inert gas. For example, the valence
orbital of the hydrogen atom is 1s. The 25 and 2p orbitals of hydro-
gen are too high in energy to be used in strong bonding.

2-3 BONDING AND ANTIBONDING MOLECULAR ORBITALS
Let us consider now the MO bonding scheme for the simplest
imaginable molecule, one with two protons and one electron. This
combination is Hy*, the hydrogen molecule-ion. Each hydrogen in
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1s, 1s,

overlap region

Figure 2-4 The overlap of two hydrogen 1s orbitals in H,*,

the molecule has a 1s valence orbital, as shown in Fig. 2-4. Notice
that the two atomic orbitals overlap in the heavily shaded region
between the two nuclei. It is just this overlap region that is affected
by adding and subtracting atomic orbitals to construct molecular
orbitals.

There are two different ways in which we can linearly combine
two 15 hydrogen atomic orbitals. The first is to add them together
(Fig. 2-5). It is easy to see from this figure that an electron in MO
I will spend most of its time in the overlap region between the nuclei
H, and H,. This maximizes the attractive force between the elec-
tron and the two nuclei; therefore an electron in this MO is more

1s, o Ls, = MO I

Figure 2-5 Schematic drawing of the formation of the bond-
ing MO of H.*.
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stable than in either isolated 1s atomic orbital. We refer to such an
MO as bonding. Furthermore, this MO is symmetric for rotation
about a line joining the two H nuclei. That is, if we place an arrow
through the two nuclei, and then turn the arrow, the MO still looks
exactly the same (Fig. 2-6). We call an orbital with such ¢ylindrical
symmetry a o molecular orbital’ The ¢ bonding MO will be abbre-
viated o®.

The other linear combination is formed by subtraction of one of
the two hydrogen 1s orbitals from the other (Fig. 2-7). This type of
MO has a node in the region between the two nuclei. Thus an elec-
tron in MO II will never be found halfway between the two nuclei;
instead it will be mainly confined to space outside the overlap region.
An electron in MO II is less stable than in an isolated 1s hydrogen
atomic orbital, and we therefore say that II is antibonding. The
antibonding MO also has cylindrical symmetry and thus is ¢ anti-
bonding or o*.

rotation

no change after rotation

Figure 2-6 Rotation of the bonding MO of H," about the
internuclear axis.

1 In fact, any molecular orbital that does not have a nodal plane consaining the inter-
nuclear axis is a ¢ molecular orbital.



42 Electrons and Chemical Bonding

0
1
1
)

s, = s = MO 1II

Figure 2-7 Schematic drawing of the formation of the anti-
bonding MO of H,™.

2-4 MOLECULAR-ORBITAL ENERGY LEVELS

The approximate wave functions for the ¢® and ¢* molecular
orbitals are:

Y(a®) = N (15, + 1sp) -

Y(o*) = N*(Ls, — 1sp) 2-2)
Equations (2-1) and (2-2) are simply the analytical expressions for
the molecular orbitals shown in Figs. 2-5 and 2-7, respectively.
The values of the constants N® and N* in Eqs. (2-1) and (2-2) are
fixed by the normalization condition,

SWlrdxdydz= SYpdr=1 2-3)

Let us proceed to evaluate N®. First we substitute Y(¢®) in Eq. (2-3),
giving
S WP dr=1= fS[N(ls, + 1) dr

= (N[ S (st dr + S (Asp ) dr
4+ 2/ (As)Ass) dr]  (2-4)

Provided the atomic orbitals 1s, and 1s, are already normalized,

S Qsa)Asa) dr = S Asp)Asp)dr =1 2-5)

The integral involving both 1s, and 1y is called the overlap integral
and is denoted by the letter §:

§ = overlap integral = S/ (1s,)ss) dr (2-6)
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Thus, Eq. (2-4) reduces to
(NeP[2+ 28] =1 @D

and

1
b -
Nt =+ ‘/2(1 5 -8
In our approximate scheme we shall neglect the overlap integral
in determining the normalization constant.! Therefore, arbitrarily
picking the positive sign in Eq. (2-8), we have
N' = Vi -9

The value of N* is obtained in the same fashion, by substituting Eq.
(2-2) in Eq. (2-3) and solving for N*. The result is

1

N* = £ l/ﬁffﬁ (2-10)

or, with the § = 0 approximation,
N*= V1 (2-1D)

The approximate molecular orbitals for Hy* are therefore
1

Yot = ‘\‘/‘ECIJG + 1) (2-12)

N1
Yo%) = 75(1% — 1s) (2-13)

The energies of these molecular orbitals are obtained from the
Schrédinger equation,

5oy = Ly -14
Multiplying both sides of Eq. (2-14) by ¢ and then integrating, we

have

Sy dr = ESY? dr (2-15)

1 This approximation involves a faitly substantial error in the case of Hy™. The
overlap of 1s, and 1s, in Hy™ is 0.590. Thus we calculate N® = 0.560, as compared to
N = 0.707 for the § = 0 approximation. In most other cases, however, the overlaps

are smaller Cusually between 0.2 and 0.3) and the approximation involves only a small
error.
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Since S Y2 dr = 1, Eq. (2-15) reduces to |

E = fysey dr (2-16)
Substituting Eq. (2-12) in Eq. (2-16), we have

EY(oD)] = S W(eDse(e)] dr = 3./ (Lsa + Ls)3e(Lsa+ 1s) dr
3 (Ls)3(Lse) dr + 5/ Qs )iC(1sy) dr
+ 3/ (3e(ls) dr + 3./ As)3e(1s) dr - (2-17)

We shall not attempt to evaluate the various integrals in Eq. (2-17),
but instead shall replace them using the following shorthand:

4o = S Qsa)3(Lso) dr (2-18)
7 = S Qsp)3c(lsy) dr (2-19)
B = S Q)3 (Lsp) dr = S (Lep)3(1s,) dr (2-20)
In this case, since 1y, and 1g are equivalent atomic orbitals,
fa= g =4 (2-21)

We shall call ¢, and g, conlomb integrals. The coulomb integral repre-
sents the energy required to remove an electron from the valence
orbital in question, in the field of the nuclei and other electrons in
the molecule. Thus it is sometimes referred to as a valence jonization
Potential.

We shall call 8 the exchange integral in this text. In other soutces,
however, you may find 8 refetred to as a resonance or covalent integral.
We have seen that an electron in the ¢® molecular orbital spends most
of its time in the overlap region common to both nuclei. Thus the
electron is stabilized in this favorable position for nucleus s—electron—
nucleus 4 attractions. The exchange integral g simply represents
this added covalent-bonding stability.

Simplitying Eq. (2-17), we have finally

E(D]=q+8 (2-225

The energy of the o* molecular orbital is found in the same manner,
substitution in Eq. (2-16) giving

EW(e®)] = 1/ A5y — 15)3(Asy — Llp) dr = g— B (2-23)
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This tesult shows that the antibonding molecular orbital is less
stable than the bonding molecular orbital by an amount equal to
—2B. An electron in the o* molecular orbital has only a small prob-
ability of being found in the energetically favored overlap region.
Instead it is confined to the extreme ends of the molecule, which are
positions of high energy relative to the middle of the molecule.

It is convenient to show the relative molecular-orbital energiesin a
diagram. Such a diagram for HoT is shown in Fig. 2-8. The valence
orbitals of the combining atoms are represented in the outside col-
umns and are ordered in terms of their coulomb energy. The most stable
valence orbitals are placed lowest in the diagram. Since ls, and 1
have the same coulomb energy, these levels are placed directly oppo-
site one another.

The moleculat-otrbital energies ate indicated in the middle column.
The o® orbital is shown to be more stable than the combining 1s
valence orbitals, and the o* orbital is shown to be correspondingly
less stable.

The electron in the ground state of Hy™ occupies the more stable
molecular orbital; that is,

ground state of Hyt = ¢°

H, orbital ) molecular orbitals H, orbital

increasing energy ————

Figure 2-8 Relative molecular-orbital energies for Hy™.



46 Electrons and Chemical Bonding

PROBLEM
2-1. Calculate the energies of the ¢® and o* orbitals for Hy*, in-
cluding the overlap integral §. Show that ¢* is destabilized more
than o® is stabilized if the overlap is different from zero.

2-5 THE HYDROGEN MOLECULE

The orbital electronic structures of molecules with more than one
valence electron are built up by placing the valence electrons in the
most stable molecular orbitals appropriate for the valence orbitals of
the nuclei in the molecule. We have constructed the molecular orbi-
tals for the system of two protonsand two ls atomic orbitals. This
set of orbitals is appropriate for Ho™, Hs, Ho™, etc. The hydrogen
molecule, Hs, has two electrons that can be placed in the molecular
orbitals given in the energy-level diagram (Fig. 2-8). Both elec-
trons can be placed in the ¢® level, provided they have different spin
(#,) quantum numbers (the Pauli principle). Thus we represent the
ground state of H,

ground state of Hy = (¢%)? or [0y = +5)][0%(ms = —3))

which in our shorthand is (¢®)(a?).

This picture of the bond in H, involving two electrons, each in a
o® orbital but with opposite spins, is analogous to the Lewis electron-
pair bond in H, (Fig. 2-3). It is convenient to carry along the idea
that a full bond between any two atoms involves two electrons.
Thus we define as a useful theoretical quantity the number of bonds
in a molecule as follows:

(number of electrons in bonding MO’s) —
(number of electrons in antibonding MO'’s)

2

number of bonds =
(2-24)
One electron in an antibonding MO is considered to cancel out the

bonding stability imparted by one electron in a bonding MO. Using
thisformula we see that Hy* has half a ¢ bond and Hs has one o bond.
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2-6 BOND LENGTHS OF HoT AND H3

A useful experimental quantity reflecting electronic structure is
bond length. 'The standard bond length for a bond between any two
atoms is the equilibrium internuclear separation.! We shall express this
distance between nuclei in Angstrom units and refer to it as R. The
bond lengths of Ho* and Hy in the ground state are 1.06 and 0.74 A,
respectively, as shown in Fig. 2-9. Thus the H, molecule, with one
o bond, has a shorter R than does Hy*, with only half a ¢ bond. In
general, when molecules with nuclei of approximately the same
atomic number are compared, the bond length is shortest between
the two atoms with the largest number of bonds.

2-7 BOND ENERGIES OF Hy™ AND Hy

Another useful experimental quantity that reflects electronic struc-
ture is bond-dissociation energy. The standard bond-dissociation energy

3

R = 1.06A

( H H) 4 o-bond
R =0.74A

H =——————— 1 g-bond

Figure 2-9 Comparison of Hy™ and Ho.

1 To make matters more complicated for us, nuclei in molecules are always vibrating.
For example, the bond in Ha, say, stretches and contracts as shown schematically
below:

contracting

H-H - H—H «— H—H
contracted  equilibrium  stretched
internuclear
separation

stretching

The equilibrium internuclear separation about which the nuclei vibrate is the standard
bond length.
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for a bond between any two atoms is the energy requived to break the
bond, giving isolated ground-state atoms; i.e.,

H, 4+ bond-dissociation energy — H + H (2-25)

We shall express bond energy in kcal/mole units, and refer to a par-
ticular bond energy as DE (atom I-atom 2). The bond energies of
Hy™ and Hs are 61.06 and 103.24 kcal/mole, respectively. We see
that Hy, with one ¢ bond, has a larger bond energy than Hy™. This
is again a very general result, since bond energies in an analogous
series of molecules increase with an increasing number of bonds.

2-8 PROPERTIES OF HaT AND Hy IN A MAGNETIC FIELD

Most substances can be classified as either paramagnetic or diamag-
neric according to their behavior in a magnetic field. A paramag-
netic substance is attracted into a magnetic field with a force that is
proportional to the product of the field strength and field gradient.
A diamagnetic substance, on the other hand, is repelled by a mag-
netic field.

In general, atoms and molecules with unpaired electrons (§ 5 0)
are paramagnetic. Since electrons possess spin, an unpaired electron
creates a permanent magnetic moment. There is in many cases a further
contribution to the permanent magnetic moment as a result of the
movement of the electron in its orbital about the nucleus Cor nuclet,
in the case of molecules). In addition to the permanent paramag-
netic moment, magnetic moments are znduced in atoms and molecules
on the application of an external magnetic field. Such induced mo-
ments are opposite to the direction of the field; thus repulsion occurs.
The magnitude of this repulsion is a measure of the diamagnetism of
the atom or molecule in question.

The paramagnetism of atoms and small molecules that results from
unpaired electrons is larger than the induced diamagnetism; thus
these substances are attracted into a magnetic field. Atoms and
molecules with no unpaired electrons (§ = 0), and therefore no
paramagnetism due to electron spin, are diamagnetic and are repelled
by a magnetic field.

The Ho* ion, with one unpaired electron (8 = 3), is paramagnetic.
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The H, molecule, with its two electrons paired (§ = 0), is dia-
magnetic.

2-9 SECOND-ROW HOMONUCLEAR DIATOMIC MOLECULES

Let us proceed now to the atoms in the second row of the periodic
table, namely, Li, Be, B, C, N, O, F, and Ne. These atoms have 2s,
2P, 2py, and 2p, valence orbitals. We first need to specify a coordi-
nate system for the general homonuclear diatomic molecule As, since
the 2p orbitals have directional properties. The z axis is customarily
assigned to be the unique molecular axis, as shown in Fig. 2-10. The
molecular orbitals are obtained by adding and subtracting those
atomic orbitals that overlap.

o Orbitals

The 25 and 2p. orbitals combine to give ¢ molecular orbitals, as
illustrated in Fig. 2-11. The normalized wave functions are:

o L _
lp(”s) = \/i<2§a + 251)) <2. 26)

I D )
‘p(Us > = ,\/i<2§a 2 b) <2 27>

N .
¢<0'z> - _\/§<2’P2a + 2?%) (2 28>

‘4<a>/2 _— A<b>/
S

Figure 2-10 Coordinate system for an A; molecule.
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(2) overlap of 25 valence orbitals

(b) overlap of 2p, valence orbitals

Figure 2-11 (a) Overlap of two 2s valence orbitals in A..
(b) Overlap of two 2p. valence orbitals in A,.

N L _ "
‘I’(‘Tz ) = \/ECZPza 21’%) (2 29)

Notice that the ¢, molecular orbitals are symmetric for rotation
about the g axis.

w Orbitals

The 2p, and 2p, orbitals are not symmetric for rotation about the g
axis. The two 2p, orbitals overlap to give the molecular orbital
shown in Fig. 2-12. This molecular orbital has a plus lobe on one
side of the g axis and a minus lobe on the other side. So if we rotate
the molecular orbital by 180°, it simply changes sign. Multiplica-
tion by —1 restores the original otbital. In other words, there is a
node in the yz plane as shown in Fig. 2-13. A molecular orbital of
this type is called a m molecular orbital. It is clear that the two 2p,
orbitals can also overlap to give = molecular orbitals, which have a
node in the xg plane. There will be 7 bonding (7*) and 7 antibond-
ing (v*) molecular orbitals; the more stable #* orbitals will have a
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0 e = -==0

Figure 2-12 Overlap of two 2p, orbitals in A,.

concentration of electron density between the two A nuclei, whereas
the less stable 7* orbital will have a node between the two nuclei.
Boundary surfaces of the ¢ and = molecular orbitals for A, molecules
with 25 and 2p valence orbitals are shown in Fig. 2-14. The nor-
malized wave functions for the = MO'’s follow:

V) = (2, + 200 (230)
Y(r®) = @(217% = 2pu) 23D
Wm) = b+ 200 (23
VD = 5, = ) @-33)

The energy-level diagram for the molecular orbitals that accept the
valence electrons can now be estimated. We know that the 2s level
is considerably more stable than 2p in the atoms. The red line at
1.85eV in the emission spectrum of lithium is due to an electron fall-
ing from the 2p to the more stable 2s orbital. In fluorine, the 25-2p
energy difference is over 20 eV. Thus we place 2p above 2s in the
energy-level diagram.! Then the o®, o*, #®, and 7* orbitals are placed
with the bonding levels more stable than the antibonding levels in

! See Appendix for neutral-atom orbital energies.
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nodal plane

original orbital

Figure 2-13 Rotation of a = molecular orbital by 180° about
the internuclear axis.

any given combination. The possible energy-level diagrams are
shown in Fig. 2-15. '
The relative positioning of the o level is uncertain. When the
25-2p energy difference is large, o,? is probably more stable than
me,,?, as shown in Fig. 2-154. We should emphasize here that it isa
good approximation to consider the o, molecular orbitals as com-
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m,” and m,* are equivalent to 7.® and m.*

Figure 2-14 Boundary surfaces of the ¢ and = molecular
orbitals formed from s and p valence orbitals for a homonuclear
diatomic molecule.

posed of the two 2s atomic orbitals only if the 2,-2p energy differ-
ence is large. For small 2,-2p energy differences, we must consider
the two 25 and the two 2p, orbitals together in an LCAO-MO
scheme. The most stable MO would be the combination

Wod) = ——=——=(200 + 7202, + 25, + 72p2)

V21 + ) 2(1 %)

where the coefficient 7 is less than unity and represents the amount of
2p included in the ¢> MO.
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Figure 2-15 Molecular-orbital energy-level diagrams for a
homonuclear diatomic molecule (@) with no o.~o; interaction;
(b) with appreciable o~ interaction.
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The stabilization of ¢ and ¢,* resulting from such s—p bybridiza-
tion is accompanied by a corresponding destabilization of ¢ and
o.*, these latter orbitals acquiring some 2s character in the process.
This effect is shown schematically in Fig. 2-16.

The final result for any reasonable amount of s—p mixing is that the
a.? orbital becomes less stable than m,,?, as shown in Fig. 2-156. As
we shall see in the pages to follow, zhe experimental information now
available shows that the o level is higher energy than the ., level in
most, if not all, diatomic molecules.

In Fig. 2-15 the =;* and =} levels are shown on the same line.
There is no difference in overlap in the m, and =, molecular orbitals
and thus they have the same energy, or, in the jargon of the profes-
sion, they are degenerate.

Using the molecular-orbital energy levels in Fig. 2-15, we shall
discuss the electronic configurations of the second-row A, molecules.

Li,

The lithium atom has one 2s valence electron. In Li, the 2s-2p
energy difference is small and the ¢> MO of Li; undoubtedly has
considerable 2p character. The two valence electrons in Li, occupy
the o> MO, giving the ground-state configuration (¢,°)*. Consistent
with the theory, experimental measurements show that the lithium

b

g S—
7~ o i o BT

energy difference

G is larger
: n'-"'"-v-._*_. 1L0'ato

energy

Figure 2-16 Schematic drawing of the effect of o,~¢, interac-
tion on the energies of ¢, 0.%, o.f, and o,*.
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molecule has no unpaired electrons. With two electrons in a bond-
ing MO, there is one net bond. The bond length of Lis is 2.67 A as
compared with 0.74 A for Hz. The larger R for Lis is partially due to
the shielding of the two o, valence electrons by the electrons in the
inner 1s orbitals. This shielding reduces the attractions of the nuclei
and the electrons in the > MO. The mutual repulsion of the two 1s
electron pairs, an interaction not present in H, is also partly respon-
sible for the large R of Lis. The bond energies of Hy and Li; are 103
and 25 kcal/mole, respectively. The smaller bond energy of Li; is
again undoubtedly due to the presence of the two 1s electron pairs,
as discussed above.

B€2

The beryllium atom has the valence electronic structure 252, The
electronic configuration of Bey would be (o:2)?(os*)?. This configura-
tion gives no net bonds [(2 — 2)/2 = 0] and thus is consistent with
the absence of Be, from the family of A, molecules.

B,

Boron is 2s22p'. The electronic configuration of B, depends on the
relative positioning of the ¢.% and the m;,° levels. Experimental
measurements indicate that the boron molecule has two unpaired elec-
trons in the w2 level. Thus the electronic configuration’ of B, is
(e (o P(m2)(m?P), giving one net = bond. The bond length of
By 15 1.59 A. The bond energy of Bs is 69 kcal/mole.

G

Carbon is 2s22p*. In carbon the ¢.* and w,,} levels are so spaced
that both the (620" )2(m; ) and the (¢.2)*(o* (. P(a.2) con-
figurations have approximately the same energy. The latest view is
that the configuration (¢.2)?(s,*)*(m.,2)* is the ground state (by less
than 0.1eV). In thisstate there are no unpaired electrons and a total
of two 7 bonds. This means that ¢,> must be considerably higher
energy than m,,° in C,, since the lowest state in the (,%)*(o*)?
(7e,,?)%(a.?) configuration has two unpaired electrons. Electron
pairing requires energy (recall Hund's first rule). The two bonds
predicted for C; may be compared with the experimentally ob-
served bond energy of 150 kcal/mole and the bond length of 1.31 A.
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N

Nitrogen is 2s22p®. The electronic configuration of N is (a2)?
(o0 (ms 2 (a.P)?, consistent with the observed diamagnetism of this
molecule. The nitrogen molecule has three net bonds (one o and
two ), the maximum for an A, molecule, thus accounting for its un-
usual stability, its extraordinarily large bond energy of 225 kcal/
mole, and its very short R of 1.10 A.

We wish to emphasize bere thar the highest filled orbital in Ns is o2,
which is contrary to the popular belief that w,,,° is the bigher level. The
experimental evidence comes from a detailed amalysis of the electronic
spectrum of N, and from spectroscopic and magnetic experiments that
establish that the most stable state for Nov arises from the configuration
(0:2) (o) (w2, ) (0.

0

Oxygen is 2s22p% The electronic configuration of O, is (035)2
(62 (a 2wy ) () (m,*). The electrons in m,,* have the same
spin in the ground state, resulting in a prediction of rwo unpaired
electrons in Oy; the oxygen molecule is paramagnetic to the extent of
two unpaired spins in agreement with theory. The explanation of
the paramagnetism of O; gave added impetus to the use of the molec-
ular-orbital theory, since from the simple Lewis picture it is not at
all clear why O; should have two unpaired electrons.

Two net bonds (one o, one 7) are predicted for O.. The bond
energy of Oy is 118 kcal/mole, and R = 1.21 A. The change in bond
length on changing the number of electrons in the m, ,* level of the
Os system is very instructive. The accurate bond length of O, is
1.2074 A. When an electron is removed from =, ,*, giving Oqt, the
bond length decreases to 1.1227 A. Formally, the number of bonds
has increased from 2 to 25. When an electron is added to the m, ,*
level of Oy, giving Oy, the bond length increases to 1.26 A; addition of
a second electron to give O4*~ increases the bond length still furcher
to 1.49 A. This is in agreement with the prediction of 13 bonds for
0.~ and 1 bond for O

F

Fluorine is 2s22p5. The electronic configuration of Fs is (o7
(o) (022 () )Y, leaving no unpaired electrons and one net
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bond. This electronic structure is consistent with the diamagnetism
of F,, the 36-kcal/mole F—F bond energy, and the R of 1.42 A.

N€2

Neon has a closed-shell electronic configuration 252235, The hypo-
thetical Ne; would have the configuration (o)?(os* (o) (s, 2"
(1r5,4%)"(0.*)? and zero net bonds. To date there is no experimental
evidence for the existence of a stable neon molecule.

2-10 OTHER A, MOLECULES

With proper adjustment of the » quantum number of the valence
orbitals, the MO energy-level diagrams shown in Fig. 2-15 for
second-row A, molecules can be used to describe the electronic struc-
tures of As molecules in general.

Nﬂ2, K2, Rbg, CJ"z

The alkali metal diatomic molecules all have the ground-state con-
figuration (o), with one o bond. They are diamagnetic. The
bond lengths and bond energies of Lis, Nas, Ko, Rby, and Cs; are given
in Table 2-1.. The bond lengths increase and the bond energies de-

Table 2-1
Bond Lengths and Bond Energies of Alkali Metal Molecules®

Bond enevgy,

Molecule Bownd length, A keal/mole
Li, 2.672 25
Na, 3.078 17.3
K, 3.923 11.8
Rb, ' 10.8
Cs, 10.4

2Data from T. L. Cottrell, The Strengths of Chemical Bonds, Butter-
worths, London, 1958, Table 11.5.1.
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crease, regularly, from Lis to Css. These effects presumably are due
to the increased shielding of the o electrons by inner-shell elec-
trons in going from Lis to Css.

CIZ’ B?'Qa IZ

The ground-state electronic configuration of the halogen molecules
is (62 (o000 (7 ) (msy™), indicating one net o bond. The
molecules are diamagnetic. Table 2-2 gives bond lengths and bond
energies for Fa, Clp, Bry, and I,. The bond lengths increase predict-
ably from F; to I, but the bond energies are irregular, increasing from
Fs to Cl; and then decreasing from Cls to Io.  The fact that the bond
energy of Clp is larger than that of F is believed to be due to the
smaller repulsions of electron pairs in the 7 orbitals of Clo. One ex-
planation which has been advanced is that the reduced repulsions
follow from the interaction of the empty chlorine 34 orbitals in the
w MO system. As a result of such p,—4, interaction, the electron
pairs in Cly have a greater chance to avoid each other. However, it
is mot necessary to use the p.—d, explanation, since we know from
atomic spectra that the interelectronic repulsions in the 2p orbitals of
F are considerably larger than the repulsions in the 3p orbitals of CL.

Table 2-2
Bond Lengths and Bond Energles of Halogen Molecules®

Bond enevgy,

Molecule Bond length, A kcal/mole
F, 1.418 36
Cl, 1.988 57.07
Br, 2.283 45.46
I, 2.667 35.55

8Data from T. L. Cottrell, The Strvengths of Chemical Bonds, Butter-
worths, London, 19568, Table 11.5.1.
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Table 2-3

Quantum Number Assignments for Molecular Orbitals
in Linear Molecules

Molecular ovbitals my Atomic ovbitals
0 S, Dz, dgz
T xl © by, by, dg, dy,
5 +2 dxy: dxz_yz

2-11 TERM SYMBOLS FOR LINEAR MOLECULES

Electronic states of a linear molecule may be classified conveniently
in terms of angular momentum and spin, analogous to the Russell-
Saunders term-symbol scheme for atoms. The unique molecular axis
in linear molecules is labeled the g axis. The combining atomic orbitals
in any given molecular orbital have the same 7z; value. Thus an »
quantum number is assigned to each different type of MO, as indi-
cated in Table 2-3. The term designations are of the form

ZS+1|ML|

where § has the same significance as for atoms. The AMj-state
abbreviations are given in Table 2-4.
We shall work two examples in order to illustrate the procedure.

Table 2-4

State Symbols Corresponding to My, Values in
Linear-Molecule Electronic-State Clagsification

State My,
z 0
i +1
A +2
$ +3
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EXAMPLE 2-1
The ground-state term of Hy is found as follows.
1. Find Mr: The two electrons are placed in the ¢® MO shown in
Fig. 2-8, giving the (¢*)? configuration. This is the most stable
state of Ho. The MO is o type, so each electron has »; = 0.
Then

M],:mll+m12=0+0=0

and the state is Z.
2. Find Mg Since both electrons have #; = 0, they must have
different m, values (the Pauli principle). Thus,

Ms = my + moy = (+D +(~D =0

with -Ms = 0, § = 0. The correct term symbol' is therefore Z.

From the result in the H; case, you may suspect that filled molec-
ular orbitals always give My = 0 and Mg = 0. Indeed this is so,
since in filled orbitals every positive 7z, value is matched with a
canceling negative m; value. The same is true for the m, values; they
come in +%, —% pairs in filled orbitals. This information eliminates
considerable work in arriving at the term symbols for states of mole-
cules in which there are many electrons, since most of the electrons
are paired in different molecular orbitals.

EXAMPLE 2-2

Let us now find the ground-state term for O,. The electronic
configuration of Oy is (o) (o (0 2)(me? (™). All the orbit-
als are filled and give Mr = O up to =.,,*. The two electrons in
x* can be arranged as shown in Table 2-5.

There is a term with My = 42, —2, and Ms = 0 (§ = 0); the
term designation is 'A. There is a term with Mz = 0 and My =
41,0, —1(§ = 1); the term designation is *Z. This leaves one
microstate unaccounted for, with My = 0 and Mg = 0(§ = 0);
thus there is a = term.

The ground state must be either 'A, 3%, or '=. According to

1 There are additional designations possible in certain linear molecules, depending
on the symmetry properties of the molecular wave function. For example, the complete
symbol for the ground state of Hs is 1Z,7. A discussion of the complete notation is
given in C. J. Ballhausen and H. B. Gray, Molecular Orbital Theory, Benjamin, New
York, 1964, Chap. 3.
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Table 2-5
My, Mg Values for Example 2=2
Mg
My, 1 0 -1
2 (7, 7)
1
. (1,7.) o
0 (mymy) . (mymy)
(mymy)
-1
-2 (7-!;-1;—1)

Hund’s first rule the ground stdte has the highest spin multiplicity;
the ground state is therefore *Z. As we discussed earlier, the 32
ground state predicted by the molecular-orbital theory is consistent
with the experimental results, since O, is paramagnetic to the
extent of two unpaired electrons (§ = 1). Spectroscopic evidence
also confirms the *2 ground state for O,.

In Table 2-6 are listed the ground-state terms and other pertinent
information for several homonuclear diatomic molecules.

2-12 HETERONUCLEAR DIATOMIC MOLECULES

Two different atoms are bonded together in a beteronuclear diatomic
molecule. A simple example for a discussion of bonding is lithinum
hydride, LiH.

The valence orbitals of Li are 25, 2ps, 2p,, and 2p.. The valence
orbital of H is 1s. Fig. 2-17 shows the overlap of the hydrogen 1s
orbital with the 2s, 2p,, 2p,, and 2p, lithiom orbitals. The first step
is to classify the valence orbitals as ¢ or m types. The 1s of H and
the 25 and 2p, of Li ate ¢ valence orbitals. Thus, the lithium 2s and
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2p. orbitals can be combined with the 1s orbital of hydrogen. The
2p, and 2p, orbitals of Li are 7 valence orbitals and do not intetact
with the o type 15 orbital of H. The overlap of 2p, (ot 2p,) with 1¢
is zero, as shown in Fig. 2-17.)

We shall now discuss the ¢-moleculat-orbital system in some de-
tail. Since the 2s level of Li is more stable than the 2p level, it is a
good approximation to consider the ¢® molecular orbital as composed
mainly of the hydrogen 15 and the lithium 2s orbitals.

It is also important to note that the 1s orbital of H is much more
stable than the 25 orbital of Li. We know that in the free atoms this
stability difference is large, since the first ionization potential of
Li (15225 — 1) is 5.4 €V and the ionization potential of His 13.6eV.
As a consequence of the greater stability of the hydrogen 1s orbital,
an electron in the ¢* molecular orbital spends most of its time in
the vicinity of the H nucleus.

1s

2p. / 1s
o overlap o overlap

equal + and — give zero

¥ same for 2p,,1s

1s

2p,

net overlap 2p,,1s is zero

Figure 2-17 Overlap of the hydrogen 1s orbital with the
lithium valence orbitals.
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Table 2-6
Properties of Homonuclear Diatomic Moleculeg?
Ground Bond Bond-dissociation
Molecule state length, A enervgy, kcal/mole
Ag, 20 39
As, Y 91
Au, e 52
B, DI 1.589 69
Bi, 'Y 39.2
Br, Y 2.283 45.46
C, Y Cmb 1.3117 150
Cd, 5 2.1
Cl, 'Y 1.988 57.07
Cly* N 1.891
Cs, DY 10.4
Cu, 5 47
D, > 0.7416
F, > 1.418 36
Ga, 35
Ge, 65
H, ) 0.7415 103.24
Hy* 2 1.06 61.06
He,* 5 1.08
Hg, D> 3.2
L D 2.6666 35.55
K» s 3.923 11.8
Li, > 2.672 25
N, Y 1.0976 225.0

(continued)
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Table 2-6 (continued)

Ground Bond Bond-dissociation

Molecule state length, A enevgy, kcal/mole

N 2 1.116

Na 5 3.078 17.3

0, 3 1.20741 117.96

0, ’n 1.1227

(oFy 2 1.26

0,7 e 1.49

P, 5 1.8943 116.0

Pb, 23

Rby S 10.8

S, 535 1.887 83

Sb, 'z 69

Se, 53 2.152 65

Si, 2.252 75

Sn, 46

Te, 2.59 53

Zn, 12 ? 6

2Data from G. Herzberg, Spectra of Diatomic Molecules, Van Nostrand,
New York, 1950, Table 39; T. L. Cottrell, The Strengths of Chemical Bonds,
Butterworths, London, 1958, Table 11.5.1; L. E. Sutton (ed.), ‘‘Interatomic
Distances,”’ Special Publication No, 11, The Chemical Society, London, 1958.

b ghort discussion of the ground state of Cy can be found in J. W,
Linnett, Wave Mechanics and Valency, Methuen, London, 1960, p. 134.

The ¢® orbiral is shown in Fig. 2-18. The analytical expression for
the ¢ MO of LiH has the form

(o) = C2s 4+ C2p. + Csls (2-34)

In this case, C; > C; > G and their numerical values are restricted by
the normalization condition [Eq. (2-3)].
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Figure 2=-18 Boundary surface of the ¢ bonding molecular
orbital of LiH.

Since both the 25 and the 2p, lithium orbitals are used in the ¢
molecular orbitals, there are two o* orbitals, one involving the 2s
and one involving the 2p,. These ¢* orbitals are mainly localized
on the Li, as shown in Fig. 2-19. The approximate wave functions
are:

\b(ﬂ,*) = qu.l‘ — C{,].J’,‘ 64 > Ca (2—35)

W) = C2p. — Gls;, G > G (2-36)

Figure 2-19 Boundary surfaces of the o.* and o¢.;* MO’ of
LiH.
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2-13 MOLECULAR-ORBITAL ENERGY-LEVEL SCHEME FOR LiH

Figure 2-20 shows the MO energy-level scheme for LiH. The

valence orbitals of Li are placed on the left side of the diagram, with
the 2p level above the 25 level. On the right side, the hydrogen 1s
level is shown. The 1s level of H is placed below the 2s level of Li,
to agree with their known stability difference.

The ¢* and o* MO's are placed in the center. The ¢® MO is more
stable than the hydrogen 1s valence orbital, and the diagram clearly
shows that ¢® is mainly composed of hydrogen 1s, with smaller frac-
tions of lithium 25 and 2p,. The o* MO is less stable than the lith-
ium 25 valence orbital, and the diagram shows that ¢,* is composed

of lithium 2s and hydrogen 1s, with a much greater fraction of lith-

Li orbitals LiH orbitals

increasing energy

H orbital
| o
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3 O 5
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Figure 2-20 Relative orbital energies in LiH.
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ium 2s5. The ¢,* orbital is shown less stable than 2p,, and it clearly
has considerable 2p, character.

The 2p, and 2p, orbitals of Li are shown in the MO column as
m-type MO’s. They are virtually unchanged in energy from the Li
valence-orbital column, since H has no valence orbitals capable of
w-type interaction.

2-14 crounD sTATE OF LiH

There are two electrons to place in the MO energy-level scheme for
LiH shown in Fig. 2-20. This total is arrived at by adding together
the one valence electron contributed by hydrogen (1s) and the one
valence electron contributed by lithium (2s). Both electrons are ac-
commodated in the o> MO, giving a ground-state configuration

(O.b>2 = 13

Since the electrons in the ¢ MO spend more time in the vicinity of
the H nucleus than of the Li nucleus, it follows that a separation of
charge is present in the ground state. That is, the Li has a partial
positive charge and the H has a partial negative charge, as shown
below:

Li*+H*

A limiting situation would exist if both electrons spent all their time
around the H. The LiH molecule in that case would be made up of
aLitionand a H-ion; thatis,§ = 1. A molecule that can be formu-
lated successfully as composed of ions is described as an ionic molecule.
This situation is encountered in a diatomic molecule only if the
valence orbital of one atom is very much more stable than the valence
orbital of the other atom. The LiH molecule is probably not such an
extreme case, and thus we say that LiH has partial ionic character.
A calculation of the coeflicients Cy, G, and C; would be required to
determine the extent of this partial ionic character. One such calcu-
lation (unfortunately beyond the level of our discussion here) gives
a charge distribution

Li(]<8+H()-8—

which means that LiH has 80 per cent ionic character.
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2-15 DIPOLE MOMENTS

A heteronuclear diatomic molecule such as LiH possesses an eleczric
dipole momens caused by charge separation in the ground state. This
electric moment is equal to the product of the charge and the distance
of separation,

dipole moment = u = ¢R (2-37)

Taking R in centimeters and ¢ in electrostatic units, p is obtained in
electrostatic units (esw).” Since the unit of electronic charge is 4.8 X
107" esu and bond distances are of the order of 10~% cm (1 A), we see
that dipole moments are of the order of 107 esu.- It is convenient to
express p in Debye units (D), with 107 esu = 1 Debye. If, as a first
approximation, we consider the charges centered at each nucleus, R
in Eq. (2-37) is simply the equilibrium internuclear separation R in
the molecule.

Since it is possible to measure dipole moments, we have an experi-
mental method of estimating the partial ionic character of hetero-
nuclear diatomic molecules. The dipole moment of LiH is 5.9 Debye
units (5.9D). ForR = 1.60 A (or 1.60 X 1078 cm), we calculate for
an jonic structure LitH™ a dipole moment of 7.7 D. Thus the partial
charge from the dipole moment datum is estimated to be 5.9/7.7 =
0.77, representing a partial ionic character of 77 per cent. This
agrees with the theoretical value of 80 per cent given in the last
section.

Dipole moments for a number of diatomic molecules are given in
Table 2-7.

2-16 ELECTRONEGATIVITY

A particular valence orbital on one atom in a molecule which is
more stable than a particular valence orbital on the other atom in a
molecule is said to be more elecrronegative. A useful treatment of elec-
tronegativity was introduced by the American chemist Linus Pauling
in the early 1930s. Electronegativity may be broadly defined as the
ability of an atom in a molecule to attract electrons to itself. It must
be realized, however, that each different atomic orbital in a molecule
has a different electronegativity, and therefore atomic electronega-
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Table 2-7

Dipole Moments of Some Diatomic Moleculeg?

Molecule Dipole moment, D
Li" 5.88
HF 1.82
HC1 1.07
HBr 0.79
HI 0.38
0, 0
Co 0.12
NO 0.15
IC1 0.65
BrCl 0.57
FCl 0.88
FBr 1.29
KF 8.60
K1 9.24

3Data from A. L. McClellan, Tables of Experi-
mental Dipole Moments, Freeman, San Francisco,
1963.

tivities vary from situation to situation, depending on the valence
orbitals under consideration. Furthermore, the electronegativity of
an atom in a molecule increases with increasing positive charge on
the atom.

The Pauling electronegativity value for any given atom is obtained
by comparing the bond-dissociation energies of certain molecules
containing that atom, in the following way. The bond-dissociation
energy (DE) of LiH is 58 kcal/mole. The DE’s of Li, and H, are 25
and 103 kcal/mole, respectively. We know that the DE’s of Liz and
H, refer to the breaking of purely covalent bonds—that is, that the
two electrons in the ¢” levels are equally shared between the two
hydrogen and the two lithium atoms, respectively. If the two elec-
trons in the ¢ MO of LiH were equally shared between Li and H, we
might expect to be able to calculate the DE of LiH from the geo-
metric mean; thus
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DEzm £ VDEx, X DEy, (2-38)

This geometric mean is only 51 kcal/mole, 7 kcal/mole less than the
observed DE of LiH. Itisa very general result that the DE of a mole-
cule AB is almosr always greater than the geometric mean of the DE s of Ay
and Bs.  An example more striking than LiH is the system BF. The
DE’s of Bs, Fs, and BF are 69, 36, and 195 kcal/mole, respectively.
The geometric mean gives

DEpr = V69 X 36 = 50 % 195 (239

This “‘extra’ bond energy in an AB molecule is presumably due to
the electrostatic attraction of A and B in partial ionic form,

AHB-

Pauling calls the extra DE possessed by a molecule with partial ionic
character the donic resonance energy or A. Thus we have the equation

A = DEAB — V¥ ]DA2 X ])B2 (2‘40)

The electronegativity difference between the two atoms A and B is
then defined as

X4 — Xp = 0.208VA (2-4D)

where X4 and Xp are electronegativities of atoms A and B and the
factor 0.208 converts from kcal/mole to electron-volt units. The
square root of A is used because it gives a more nearly consistent set
of electronegativity values for the atoms. Since only differences are
obtained from the application of Eq. (2-41), one atomic electro-
negativity value must be arbitrarily agreed upon, and then all the
others are easily obtained. On the Pauling scale, the most electro-
negative atom, fluorine, is assigned an electronegativity (or EN) of
approximately 4. The most recent EN values, calculated using
the Pauling idea, are given in Table 2-8.

Another method of obtaining EN values was suggested by R. S.
Mulliken, an American physicist. Mulliken’s suggestion is that
atomic electronegativity is the arithmetic mean of the ionization
potential and the electron affinity of an atom; i.e.,

IP +- EA

5 (2-42)

EN =



zZ

Table 2-8
Atomic Electronegativities

I I IIx I II I I I II 1I I II 11 v I o I
LY
H
2.20
Li Be B Cc N O F
0.98 | 1.57 2.04| 2.55| 3.041{ 3.44) 3.98
Na | Mg Al [ Si P S Cl
0.93 | 1.31 1.61 {1.90 | 2.19 | 2.58 | 3.16
K Ca Sc Ti v Cr Mn | Fe Co Ni Cu Zn Ga | Ge As Se Br
0.8211.00|1.36| 1,564 1.63| 1.66 | 1.55 1.83| 1.88| 1.91| 1.90 1.65 1.81| 2.01 | 2.18 2.55 | 2.96
Rb Sr Y Zr Mo Rh | Pd | Ag Cd In Sn Sb I
0.82]0.95) 1.221 1.33 2.16 2,28] 2.20) 1.93 | 1.69| 1.78} 1.96] 2.05 2.66
Cs Ba La w Ir bt Au Hg Tl Pb Bi
0.79 | 0.89 | 1.10 2.36 2.201 2.28| 2.54| 2.00| 2.04| 2.33| 2.02
Ce Pr | Nd Sm Gd Dy | Ho Er Tm Lu
1.12) 1.13 | 1.14 1.17 1.20 1,221 1.231| 1.24| 1.25 1.27
(1) | (II0) (II) (111) (1m) | (I1) (IIm) (I11)
U Np Pu
1.38 | 1.36] 1.28
(Im) | () | (I

2From A. L. Allred, J, Inovg. Nucl. Chem., 17, 215 (1961); roman numerals give the oxidation state of the atom in

the molecules which were used in the calculations.
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Equation (2-42) averages the ability of an atom to hold its own
valence electron and its ability to acquire an extra electron, Of
course the EN values obtained from Eq. (2-42) differ numerically
frem the Pauling values, but if the Mulliken values are adjusted so
that fluorine has an EN of about 4, there is generally good agreement
between the two schemes.!

2-17 10NIC BONDING

The extreme case of unequal sharing of a pair of electrons in an
MO is reached when one of the atoms has a very high electronega-
tivity and the other has a very small ionization potential (thus a
small EN). In this case the electron originally belonging to the
atom with the small IP is effectively transferred to the atom with the
high EN,

M-+ X - M+t X- (2-43)

The bonding in molecules in which there is an almost complete elec-
tron transfer is described as sonic. An example of such an ionic di-
atomic molecule is lithium fluoride, LiF. To a good approximation,
the bond in LiF is represented as LitF~. The energy required to
completely separate the ions in a diatomic ionic molecule (Fig. 2-21)
is given by the following expression:

potential energy = electrostatic energy + van der Waals energy

AY Br

A7 + BT

Figure 2-21 Dissociation of an ionic molecule into ions.

1 However, note that the two scales are in different units.
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The electrostatic energy is

AL

- 249
where ¢, and ¢, are charges on atoms M and X and R is the inter-
nuclear separation.

There are two patts to the van der Waals energy. The most im-
portant at short range is the repulsion between electrons in the filled
orbitals of the interacting atoms. Thiselectron-pair repulsion isillus-
trated in Fig. 2-22. We have previously mentioned the mutual re-
pulsion of filled inner orbitals, in comparing the bond energies of Lis
and Hg.

The analytical expression commonly used to describe this inter-
action is

van der Waals repulsion = eo8 (2-45)

where & and # are constants in a given situation. Notice that this
repulsion term becomes very small at large R values.

The other part of the van der Waals energy is the attraction that
results when electrons in the occupied orbitals on the different atoms
correlate their movements in order to avoid each other as much as
possible. For example, as shown in Fig. 2-23, electrons in orbitals
on atoms M and X can correlate their movements so that an instan-
taneons-dipole—induced-dipole attraction results. This type of potential

Figure 2-22 Repulsion of electrons in filled orbitals. This
repulsion is very large when the filled orbitals overlap (recall
the Pauli principle).
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Figure 2-23 Schematic drawing of the instentaneous-
dipole-induced-dipole interaction, which gives rise to a weak
attraction,

energy is known as the London energy, and is defined by the expres-
sion

London energy = —% (2-46)
where 4 is a constant for any particular case. The reciprocal R® type
of energy term falls off rapidly with increasing R, but not nearly so
rapidly as the be—F repulsion term. Thus the London energy is more
important than the repulsion at longer distances.

2-18 SIMPLE 10NIC MODEL FOR THE ALKALI HALIDES

The total potential energy for an ionic alkali halide molecule is
given by the expression
it
e i 1%
We need only know the values of the constants b, #, and 4 in order
to calculate potential energies from Eq. (2-47). The exact values of
these constants for alkali metal ions and halide ions are not known.
However, the alkali metal ions and the halide ions have inert-gas
electronic configurations. For example, if LiF is formulated as an
ionic molecule, Lit is isoelectronic with the inert gas He, and F~ is
isoelectronic with the inert gas Ne. Thus the van der Waals inter-
action in LiTF~ may be considered approximately equal to the van

(2-47)
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der Waals interaction in the inert-gas pair He-Ne. This inert-gas-
pair approximation is of course applicable to the other alkali halide
molecules as well.

The inert-gas-pair interactions can be measured and values for the
b, 2, and d constants are available. These values are given in Table
2-9. Using Eq. (2-47), we are now able to calculate the bond energy
of LiF.

EXAMPLE

To calculate the bond energy of LiF, we first calculate the energy
needed for the process

LiF — Lit 4 F~

We shall calculate this energy in atomic units (au). The atomic
unit of distance is the Bohr radius, 4, or 0.529 A. The atomic unit
of charge is the electronic charge. The 4, #, and 4 constants in

Table 2-9

van der Waals Energy Parameters®

Interaction paiv a b d
He—He 2.10 6.56 2.39
He—Ne 2.27 33 4.65
He—Ar 2.01 47.9 15.5
He—Kr 1.85 26.1 21.85
He—Xe 1.83 42.4 33.95
Ne—Ne 2.44 167.1 9.09
Ne-Ar 2.18 242 30.6
Ne—Kr 2.02 132 42.5
Ne—Xe 2.00 214 66.1
Ar—Ar 1.92 350 103.0
Ar—Kr 1.76 191 143.7
Ar—Xe 1.74 310 222.1
Kr—Kr 1.61 104 200
Kr—Xe 1.58 169 310
Xe—Xe 1.55 274 480

2All values are in atomic units. Data from E. A. Mason, J, Chem. Phys .,
28, 49 (1955).
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Table 2-9 are given in atomic units. Finally, 1 au of energy is equal
t0 27.21 eV. The bond length of LiF is 1.52 A; this is equal to 1.52/
0.529 = 2.88 au. For LitF, 41 = g2 = Lauand ¢ = 1 au.

Thus, on substitution of the 4, #, and 4 parameters for He-Ne, Eq.
(2-47) becomes

—1 . 4.65
_ el (—2.27)(2.88) ...
PE = 55 T 3% (2.88)0
or
PE = —0.347 + 33(0.00144) — +:53
571
or

PE = —0.308 au = —8.38 eV

Accordingly, the energy required to separate Li* from F~ at a bond
distance of 2.88 au is 8.38 eV. This is called the coordinate-bond
energy. However, we want to calculate the standard bond-dissocia-
tion energy, which refers to the process

D
LiF ———E;l» Li4+F

That is, we need to take an electron from ¥~ and transfer it to Li*:

38eV —IP,(Li
Lir 5%V pi 4 B TP g
+EA¥

We see that the equation which allows us to calculate the DE of an
alkali halide is

DE = —PE — IP; + EA
Since IP,(Li) = 5.39 eV and EAy = 3.45 eV, we have finally
DErir = 8.38 — 5.39 4+ 3.45 = 6.44 eV

The calculated 6.45 eV, or 149 kcal/mole, compares favorably with
the experimental DE of 137 kcal/mole.

Experimental bond energies and bond distances for the alkali halide
molecules are given in Table 2-10. The alkali halides provide the best
examples of ionic bonding, sinice, of all the atoms, the alkali metals
have the smallest IP's; of course the halogens help by having very
high EN's. The most complete electron transfer would be expected
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Table 2-10
Bond Properties of the Alkall Halides®

: Bownd-~dissociation
Molecule Bond length, A enevgy, kcal/mole

CsF 2.345 121
CsCl 2.906 101
CsBr 3.072 91
Csl 3.315 75
KF 2.139b 118
KCl 2.667 101
KBr 2.821 91
KI 3.048 77
LiF 1.520% 137
LiCl 2.029b 115
LiBr i 2.170 101
Lil 2.392 81
NaF 1.846b 107
NaCl 2.361 98
NaBr 2.502 88
Nal 2.7112 71
RbF 2.242b 119
RbCl 2.787 102
RbBr 2.945 30
Rbl 3.177 77

aGround-state terms are !T . Data from T. L. Cottrell, The Strengths
of Chemical Bonds, Butterworths, London, 1958, Table 11.5.1

bEstimated values; see L. Pauling, The Natuve of the Chemical Bond,
Cornell Univ. Press, Ithaca, N.Y., 1960, p. 532.

in CsF and the least complete in Lil. In Lil, covalent bonding may
be of considerable importance.

2-19 GENERAL AB MOLECULES
We shall now describe the bonding in a general diatomic molecule,
AB, in which B has a higher electronegativity than A, and both A
and B have s and p valence orbitals. The molecular-orbital energy
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levels for AB are shown in Fig. 2-24. The s and p otrbitals of B are
placed lower than the s and p orbitals of A, in agreement with the
electronegativity difference between A and B. The ¢ and = bonding
and antibonding orbitals are formed for AB in the same manner as for
As, but with the coefficients of the valence orbitals larger for B in the
bonding orbitals and larger for A in the antibonding orbitals. This
means that the electrons in the bonding orbitals spend more time
near the more electronegative B. In the unstable antibonding orbit-
als, they spend more time near the less electronegative A. The

A orbitals AB orbitals B orbitals

increasing energy — -
=
=
T
-~ - Ta
- Ces
N
L
. ~
o ~
.
e
-
F il
rs -
f"

1
]

1

¥ i #
LT |

3

(%]

g o~
Figure 2-24 Relative orbital energies in a general AB mole-
cule, with B more electronegative than A,
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Q
I
|
I

my orbitals are equivalent to .

Figure 2-25 Boundary surfaces of the MO’s of an AB mole-
cule, with B more electronegative than A.

boundary surfaces of the molecular orbitals for a general AB molecule
are given in Fig. 2-25. The following specific cases illustrate the use
of the bonding scheme shown in Fig. 2-24.

BN (8 Valence Electrons)

The ground-state electronic configuration for BN is (¢.2)*(os*)?
(727 )%e). This gives a *r state and a prediction of two bonds
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1,2 7). The BN molecule is thus electronically similar to C;. The

bond lengths of C; and BN are 1.31 and 1.28 A, respectively. The
BN bond energy is only 92 kcal/mole, as compared to 150 kcal/mole
fOI' Cg

B0, CN, CO* (9 Valence Electrons)

The BO, CN, and CO* molecules all have the ground-state con-
figuration (¢2)*(os*)*(m,,")*(e.?), and thus a 22 ground state. There
are 2% bonds predicted, which is§ more than for BN. The bond lengths
are all shorter than that of BN (or Cy), being 1.20 A for BO, 1.17 A
for CN, and 1.115 A for CO*. The bond energies are higher than
that for BN, being 185 kcal/mole for BO and 188 kcal/mole for CN.

CO, NO*, CN— (10 Valence Electrons)

The CO, NO*, and CN— molecules are isoelectronic with Ny,
having a '2 ground state. The configuration (¢)*(o.*)* (s > (0.2
predicts one ¢ and two r bonds. The bond lengths of NO*, CO, and
CN- increase with increasing negative charge, being 1.062 A for
NO+, 1.128 A for CO, and 1.14 A for CN—. Comparing molecules
having the same charge, the bond lengths of NO*, CO, and CN~ are
shorter than those of BO, CN, and CO*, as expected. The bond
energy of CO is 255.8 kcal/mole, which is even larger than the bond
energy of 225 kcal/mole for Ns.

NO (11 Valence Electrons)

The electronic configuration of NO is (¢2)%(o*)(m. /) (a2
(m: %), giving a ?r ground state. Since the eleventh electron goes
into a 7* orbital, the number of bonds is now 2%, or § less than for
NO*. Thebond length of NOis1.15 A, longer than either the CO or
NO* distances. The bond energy of NO is 162 kcal/mole, consider-
ably less than the CO value. .

The bond properties of a number of representative heteronuclear
diatomic molecules are listed in Table 2-11.
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Table 2-11
Properties of Heteronuclear Diatomic Molecules?

Ground Bond Bond dissociation
Molecule state length, A enevgy, kcal/mole

AlBr > 2.295 99
AlCI > 2.13 118
AlF D 1.65 158
AlH M 1.6482 67
All s 90
AlO ) 1.6176 138
AsN D 115
AsO n 113
BBr 5 1.88 97
BCl Y 1.715 117
BF 55 1.262 195
BH 5 1.2325 70
BN 5 1.281 92
BO ) 1.2049 185
BaO 5 1.940 130
BeCl 2%y 1.7 69
BeF 23 1.3614 92
BeH 2y 1.3431 53
BeO ' 1.3308 124
BrCl > 2.138 52.1
BrF > 1.7555 55
BrH 55 1.408 86.5
BrH* n 1.459

CF 5 1.270 106

(continued)
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Table 2-11 (continued)

Ground - Bond Bond dissociation
Molecule state length, A energy, kcal/mole
CH ' 1.1198 80
CN & 1.1718 188
CN* 1.1727
CN- 1.14
Co ) 1.1282 255.8
co* 25 1.1151
CP = 1.562 138
CS ) 1.5349 166
CSe 1509 1.66 115
Ca0 5 1.822 100
CiF s 1.6281 60.5
CsH Y 2.494 42
GaCl 5 2.208 115
GaF > 1.775 142
GeO 5 1.650 157
HC1 5 1.2744 102.2
HCL* i 1.3153
HD S 0.7413
HF s 0.9175 134
HI > 1.608 70.5
HS | 1.3503 80
IBr ) 41.90
ICl s 2.32070 49.63
IF Y 1.985 46
InBr s 2.5408 85

(continued)
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Table 2-~11 (continued)
Ground Bond Bond dissociation
Molecule state length, A enevgy, kcal/mole
InCl > 2.4012 104
InF ) 1.9847 125
InH >y 1.8376 57
Inl D 2.86 65
KH > 2.244 43
LiH ) 1.5953 58
MgO ) 1.749 92
NH M 1.038 85
NH* 2 1.084
NO 0 1.150 162
NO* 5 1.0619
NP ) 1.4910
NS ‘I 1.495 115
NS* 1.25
NaH ) 1.8873 47
NaK > 14.3
NaRb 5 13.1
OH I 0.9706 101.5
OH* 3y 1.0289
PH 3% 1.4328
PN > 1.4910 138
PO n 1.448 125
PbH n 1.839 43
PbO ) 1.922 94
PbS 'S5 2.3948 75

(continued)
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Table 2-11 (continued)

Ground Bond Bond dissociation

Molecule state length, A enevgy, kcal/mole
RbH > 2.3617 39
SO ) 1.4933 119
SbO n 74
SiF 'n 1.603 88
SiH n 1.520 74
SiN 25 1.572 104
Si0 > 1.509 185
Sis 3 1.929 148
SnH 2n 1.785 74
Sno ) 1.838 132
SnS 5 2.06 110
Sro > 1.920 83
T1Br > 2.6181 78
TIC1 5 2.4848 87
TiF ) 2.0844 109
T1H v 1.870 46
TII s 2.8136 65

2Data from G. Herzberg, Spectra of Diatomic Molecules, Van Nostrand,
New York, 1950, Table 39; T. L. Cottrell, The Strengths of Chemical Bonds,
Butterworths, London, 1958, Table 11.5.1; L. E. Sutton (ed.), ‘“‘Interatomic
Distances,’” Special Publication No. 11, The Chemical Society, London, 1958.

SUPPLEMENTARY PROBLEMS

1. Find the ground-state term for (a) Bs; (b) Fo; () Cq; (d) Se.

2. Discuss the bond properties of Na, Py, As,, Sbe, and Biy in terms
of their electronic structures.

3. Discuss the bond properties of Cly and Clo* using molecular-
orbital theory.
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4. Calculate the bond energies of (a) CsF; (b) CsBr; (¢) Nal;
(d) KCl. Compare your results with the experimental bond energies
given in Table 2-10.

5. Work out the ground-state term for (a) BeF; (b) BeO. Calcu-
late the bond energy of BeQ, assuming ionic bonding.

6. Discuss the bond properties of the interhalogen diatomic mole-
cules—CIF, BrCl, ICI, IBr, etc.

7. Discuss the bond properties of NO, PO, AsO, and ShO.

8. Formulate the bonding in the hydrogen halide molecules (HF,
HCI, HBr, and HI) in-terms of MO theory. Discuss the bond prop-
erties of these molecules.
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Linear Triatomic Molecules

3‘1 BCH2

et us investigate the molecular orbitals of BeHs, a very simple
linear triatomic molecule. As in a diatomic molecule, we tag

the molecular axis the g axis (the H-Be-H line), as shown in Fig.
3-1. Beryllium has 25 and 2p valence orbitals; hydrogen has a 1s
valence orbital. The molecular orbitals for BeH, are formed by using

=

y
Figure 3=1 Coordinate system for BeHo.
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1s, -5 25 i ls,

[}

Figure 3-2 Overlap of the hydrogen 1s orbitals with the
beryllium 2s.

the 25 and 2p, beryllium orbitals and the 15 orbitals of H, and H.
The proper lineat combinations fot the bonding molecular orbitals
are obtained by writing the combinations of 1s, and 1s, that match
the algebraic signs on the lobes of the central-atom (Be) 25 and 2p.
orbitals, respectively. This procedure gives a bonding orbital which
concentrates electronic density between the nucles. Since the 25 orbital does
not change sign over the boundary sutface, the combination
(1ss + 1sy) is appropriate (see Fig. 3-2). The 2p, orbital has a plus
lobe along +z and a minus lobe along —z. Thus the proper combi-
nation of H orbitals is (1s, — 1) (Fig. 3-3).

We have now described the two different ¢® molecular orbitals,

1s, + 2p, = 1s,

Figure 3=3 Overlap of the hydrogen 1s orbitals with the
beryllium Zp,.
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which can be written as the following molecular-orbital wave func-
tions:

Y(od) = Ci2s + C1s, -+ 1) G-
¢<0'2b> = CSZPz + C4<1fa - 115) <3"2>

The antibonding molecular orbitals corresponding to (o) and
¥(0.”) will have nodes between the Be and the two H nuclei. That
is, we shall combine the beryllium 25 with —(1s, + 1) and the
beryllium 2p, with —(1s, — 1s). The two o* molecular orbitals are
therefore

W(o*) = Cs2s — Co(lsa + 15) (3-3
and
(o) = G2p. — CG(1s — 1sp) G-

In order to describe these ¢® and o* orbitals in more detail, we must
find good numerical values for the coeflicients of the Be and H valence
orbitals. Though there are reasonably good approximate methods
for doing this, all are beyond the level of this book. However, since
the beryllium 25 and 2p, orbitals are much less stable than the hydro-
gen ls orbitals (H is more electronegative than Be), we can confi-
dently assume that the electrons in the bonding orbitals spend more
time around the H nuclei—that is, that 2C? > (2 and 2C2 > Cg.
In an antibonding orbital, an electron is forced to dwell mostly in
the vicinity of the Be nucleus—that is, G > 2G? and G? > 2.
(For further explanation of the relationships between the coeffi-
cients, see Problem 3-1.)

The 2p, and 2p, beryllium orbitals are not used in bonding, since
they are = orbitals in a linear molecule. and hydrogen has no =
valence orbitals. These orbitals are therefore nonbonding in the BeH,
molecule. The boundary surfaces of the BeHs molecular orbitals are
given in Fig. 3—4.

3-2 ENERGY LEVELS FOR BelH,

The molecular-orbital energy-level scheme for BeH,, shown in
Fig. 3-5, is constructed as follows: The valence orbitals of the cen-
tral atom are isdicated on the left-hand side of the diagram, with
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T‘y(zp y)

Figure 3-4 Boundary surfaces of the MO’ of BeH..
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Figure 3-5 Relative orbital energies in BeH.,.

the more stable 2s level below the 2p. The 1s orbitals of the two
hydrogens are placed on the right-hand side of the diagram. The
positioning of the 1s hydrogen orbitals lower than either 25 or 2p
of beryllium is based on EN considerations. In the middle of the
diagram are the molecular orbitals—bonding, nonbonding, and anti-
bonding. As usual, bonding levels ate mote stable than theitr com-
bining atomic orbitals, and antibonding levels are correspondingly
less stable. The 2p, and 2p, nonbonding Be orbitals ate not changed
in energy in our approximation scheme. Thus they are simply
moved out into the moleculat-orbital column.

The ground state of BeH: is found by placing the valence electrons
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in the most stable molecular orbitals shown in Fig. 3-5. There are
four valence electrons, two from beryllium (2s5)? and two from the
two hydrogen atoms. The ground-state electronic configuration is
therefore

(e (o) = 12

PROBLEM

3-1. Assume that the electronic charge density is distributed in
the ¢* molecular orbitals as follows:

o’ Be, 30 per cent; 2H, 70 per cent
o Be, 20 per cent; 2H, 80 per cent

Calculate the wave functions for 0 and o2, as well as the final
charge distribution in the BeH, molecule.

Solurion. Since the normalization condition is fyf> dr = 1, we
have for o

SeDPdr = C2S Q2 + CAS (s dr + Cf (U2 dr
420G S (25)(1so) dr + 2G.C f (25)(As) dr
+ 2622‘/1(15@)(1&1,) Bl‘r == 1

If the atomic orbitals 2s, 1s,, and 1s, are separately normalized, we
have

S1leDPdr = C2 + G + G + overlap terms = 1

Making the simplifying assumption that the overlap terms are zero,
we have finally

J‘h{/(dsz[Q dr = G2+ 2C2 =

The probability for finding an electron in the ¢ orbital if all space
is examined is of course 1. The equation G 4 2C,* = 1 shows that
this total probability is divided, the term G representing the prob-
ability for inding an electron in ¢." around Be, and the term 2C2* the
probability for finding an electron in ¢ around the H atoms. Since
the distribution of the electronic charge density is assumed to be 30
per cent for Be and 70 per cent for the H atoms in ¢, the probabili-
ties must be 0.30 for Be and 0.70 for the H atoms. Solving for the
coefficients C; and Cs in o, we find

=030 or C; = 0.548
and

2C* = 0.70 or C: = 0.592
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Similarly, we have the equation C2 + 2C# = 1 for o, again solving
for coeflicients on the basis of our electronic-charge-density assump-
tions,

Gt = 0.20 or Gy = 0.447
and

202 = 0.80 or C, = 0.632
The calculated wave functions are therefore

Yod) = (0.548)2¢ + 0.592(Ls, + 1s)
and
Wo2) = (0.447)2p. -+ 0.632(1s, — 1)

The ground-state configuration of BeH, is (¢,2)¥(o,?)?. The distribu-
tion of these four valence electrons over the Be and H atoms is calcu-
lated as follows:

Be o 2 electrons X €2 = 2 X 0.30 = 0.60
ab: 2 electrons X C2 = 2 X 0.20 = 0.40
total 1 electron

H.,=H, ab: 2 electrons X G2 = 2 X 0.35 = 0.70
abr 2 electrons X C&2 = 2 X 0.40 = 0.80
total 1.5 electrons per H

The BeH, molecule without the four valence electrons is represented
H+— Bet+—H+

Introducing the electrons as indicated above, we have the final
charge distribution

-0.5 4 0.5

H—Be—H
It is most important to note from these calculations that the elec-
tronic charge densities associated with the nuclei in a normalized moleculay
orbital ave given by the squares of the coefficients of the atomic orbitals (in
the gero-overlap approximation.).

3—-3 VALENCE-BOND THEORY FOR BeH,

The molecular-orbital description of BeH; has the four electrons
delocalized over all three atoms, in orbitals resembling the boundary-
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sutface pictures shown in Fig. 3—4 (o, and ¢.¥). We may, however,
cling to our belief in the localized two-electron bond and consider
that the four valence electrons in BeH; are in two equivalent bonding
orbitals. By mixing together the 2s and 2p, beryllium orbitals, we
form two equivalent sp hybrid orbitals, as shown in Fig. 3-6. These
two hybrid orbitals, sp. and spy, overlap nicely with 1s, and 1s, re-
spectively, and the bonding orbitals are (see Fig. 3~7):

Y = Cuspa + Colsg (3-5)
Yy = C1J‘?b =+ Galsy (3‘“6)
The use of equivalent hybrid o orbitals for the central atom is es-

pecially helpful for picturing the ¢ bonding in trigonal-planar and
tetrahedral molecules.

Figure 3-6 Formation of two sp hybrid orbitals.



Linear Triatomic Molecules 95

localized electron-pair bonds

Figure 3-7 Valence bonds for BeH:, using two equivalent sp
hybrid orbitals centered at the Be nucleus.

PROBLEM
3-2. Show that the general molecular-orbital description of BeH,
is equivalent to the valence-bond description if, in Eqs. (3-1) and
(3-2), Gy = C3 and G = Cy. (From the MO wave functions, con-
struct the localized functions ¢y and ys.)

3-4 LINEAR TRIATOMIC MOLECULES WITH m BONDING

The CO; molecule, in our standard coordinate system, is shown in
Fig. 3-8. This molecule is an example of a linear triatomic molecule
in which all three atoms have zs and »p valence orbitals. The 25 and
2p. carbon orbitals are used for ¢ bonding, along with the 2p, orbitals
on each oxygen.! The o orbitals are the same as for BeH,, except
that now the end oxygen atoms use mainly the 2p, orbitals instead
of the 1s valence orbitals used by the hydrogen atoms. The o wave
functions are:

¥W(ed) = G2s + CQ2ps, + 2p2) 3-D

! The oxygen valence orbitals are 25 and 2p. Thus a much better, apptoximate o
MO scheme would include both 2r and 2p, oxygen orbitals. For simplicity, however,
we shall only use the 2p. oxygen orbitals in forming the ¢ MO's.
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Y(o*) = C2s — C(2p., + 2ps,) (3-8)
\bC("zb) = Cslpz -+ C6<2pza - szb> <3—9>
\b((fz*) - C72Pz - C8<2Pza - szb> (3'1O>

The = molecular orbitals are made up of the 2p, and 2p, valence
orbitals of the three atoms. Let us derive the =, orbitals for COs.
There are two different linear combinations of the oxygen 2p,
orbitals:

2ps, + 2P, (3-11)
2pz, — 2pa, (3-12)

The combination (2p., + 2p.,) overlaps the carbon 2p, orbiral as
shown in Fig. 3-9. Since x and y are equivalent, we have the follow-
ing 7 and 7* molecular orbitals:

Y(rd) = Co2pe + Col2ps, + 202 (3-13)
W(r) = C2py + Co(2py, + 2py) (3-14)
YD) = Culpe — Ce(2pz, + 2p0) (3-15)
W) = Culpy, ~ Co(2py, + 2p0,) (3-16)

v

Figure 3-8 Coordinate system for CO..
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X, x e

2p,, +2p, +2p,

no net overlap

2, +2p, —-2p,,

no net overlap

Figure 3-9 Overlap of the 2p, orbitals of the carbon atom
and the two oxygen atoms.

The combination (2p,,— 2p.) has zero overlap with the carbon 2p,
orbital (see Fig. 3-9), and is therefore nonbonding in the molecular-
orbital scheme. We have, then, the normalized wave functions

W) = 52, — 20 G-17)

and
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VCm) = 52— 28 (3-18)

The boundary surfaces of the MO's for CO; are shown in Fig. 3-10.
The MO energy-level scheme for CO, is given in Fig. 3-11. Notice

R-=-0
Fl
H*

T

S, Tyt and my are equivalent to b, 7%, and 7,

Figure 3-10 Boundary surfaces of the MO’s of COs..
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Figure 3-11 Relative orbital energies in CO;.

that the oxygen orbitals are more stable than the carbon orbitals.
There are 16 valence electrons (C is 2:22p%; O is 252p%) to place in the
levels shown in the scheme. The ground state of CO, is therefore

TN ey Ol O G T
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Figure 3-12 Valence-bond structures for CO..

There are four electrons in ¢® orbitals and four electrons in #® orbitals.
Thus we have two ¢ bonds and two = bonds for CO,, in agreement
with the two valence-bond structures shown in Fig. 3-12.

3-5 BOND PROPERTIES OF CO,

The C—O bond distance in carbon dioxide is 1.162 A, longer than
the C—O bond distance in carbon monoxide. These bond lengths
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are consistent with the double bond (CG==0) between C and O in CO;
and the triple bond (C=0) in CO.

There are two types of bond energies for CO,. The bond-dissocia-
tion energy, which we discussed in Chapter 1L, refers to the breaking
of a specific bond. In CO,, the process

DE
0-C-0=5CO+0 (3-19)

represents the dissociation of one oxygen from carbon dioxide,
leaving carbon monoxide; this DE is 127 kcal/mole. However, the
average C—O bond energy in COs is obtained by completely splitting
CQO, into ground-state atoms, breaking both C—O bonds:

oco-ticro+o (3-20)

The average C—O bond energy (BE) is then one-half the value of E
in Eq. (3-20). Obviously E is the sum of DE(CO,) and DE(CO),

DE(CO. DE(CO
O0—C—0 ( 32) C—0+ 0 -——C--—>> C+0+4+0 (321
E = DE(CO,) + DE(CO) = 127 + 256 = 383 keal/mole
and
f— = BE(CO.) =2 192 kcal/mole (3-22)

We shall use the abbreviations BE and DE in the bond-energy tables
in this book.

The ground states, bond lengths, and bond energies for a number
of linear triatomic molecules are given in Table 3-1.

3-6 IONIC TRIATOMIC MOLECULES: THE ALKALINE EARTH HALIDES

Molecules composed of atoms of the alkaline earth elements (Be,
Mg, Ca, Sr, Ba) and halogen atoms are probably best described with
the ionic model, since the electronegativity differences between alka-
line earth and halogen atoms are large. Thus we picture the bonding
as X——M++—X~-. Let us illustrate bond-energy calculations for
molecules of this type, using CaCly as an example.
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Table 3-1

Properties of Linear Triatomic Molecules?®

Ground Bond Bond enevgies,
Molecule slate Bond length, A keal/mole
BeBrs ) BrBe—Br
Be—Br 89(BE)
BeCl, 'z ClBe—Cl 1.74 147(DE)
Be—Cl 109(BE)
Bel, 5 IBe—I
Be—1I 69(BE)
CO: s 0C—0 1.162 127(DE)
C-0 192(BE)
COs 5 0oC—-8 1.561 128(DE)
CS, D 8C~8 1.554
C—8 128(BE)
CSe, S C—8e 112(BE)
CaCl, 5 ClCa—Cl 2.54 176(DE)
Ca—Cl 113(BE)
CdBr, s BrCd—Br 2.39 76(DE)
CdCl, > ClCd—Cl 2.23 84(DE)
Cdl, > ICd—1 2.58 50(DE)
HCN D HC—-N 1.153 207(DE)
H—CN 1.066 114(DE)
HgBr, S BrHg— Br 2.43 72(DE)
Hg— Br 44(BE)
HgBrl 53 BrHg—I 64(DE)
HgCl, ) ClHg—Cl 2.30 81(DE)
Hg—Cl @ 54(BE)
HgCl1Br D BrHg—Cl 77(DE)
HgClI D) THg—Cl 75(DE)
ClHg—1 63(DE)

(continued)
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Table 3-1 (conlinued)

Ground Bond Bownd enevgies,
Molecule state Bond length, A keal/mole
HgF, D FHg—F 100(DE)
Hg—F 66(BE)
Hgl, D IHg—1I 2.60 60(DE)
Hg—I 35(BE)
NO,* % N-C 1.10
MgCl, s CIMg—Cl 2.18 136(DE)
Mg~ Cl 99(BE)
Sis, D 8i—8 70(BE)
ZnCl, s ClZn—Cl 2.12 96(DE)
Znl, ) 1Zn—1 53(DE)

aData from T. L. Cottrell, The Strengths of Chemical Bonds, Butter-
worths, London, 1958, Table 11.5.1.

EXAMPLE

Our purpose is to calculate the average Ca—Cl bond energy in
CaCls:

ca—R _car R_qpp-

For CaCl, (or any MX,) there are two attractions, Ca™*—Cl,~ and
Cat+—Cl,™, each at a distance of K. In addition there is one repul-
sion, Cl,~—Cly™, at a distance of 2R. The sum of these electrostatic
terms is represented

electrostatic energy = e v e = e 3.5

R K "2k R
The enetgy per bond is one-half —3.5¢%/R, or —1.75¢*/R. The van
der Waals energy can be approximated again as an inert-gas-pair
interaction. In this case we have one Ar-Ar interaction for each
bond. The inert-gas-pair approximation of the van der Waals
energy is not expected to be as good fot the MX, molecules as for the
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MX molecules, however, owing to the small size of M*+ compared
to that of the isoelectronic inert gas atoms (see Fig. 3-13). Thus
the acrual Ca**t—CI~ van der Waals repulsion energy is probably
less than that calculated.

The final expression for the energy of each Ca**—CI~ bond is

—1.75¢ d

R + be ak — E}

The Ca—Cl bond length in CaCly is 2.54 A, or 4.82 au. On substi-
tuting the Ar-Ar parameters from Table 2-9, we have

PE = potential energy =

—-1.75 103
o i (—lanesy =
iEL O (4.82)¢

or
PE = —0.337 au = —9.17 eV

The 9.17 eV is one-half the energy required to dissociate CaCls into
ions,

g
CaClg—E—> Ca**+-Cl-+ Cl- E' = —2PE
For the average bond energy BE, we have the process
E
CaCl,——Ca+Cl+Cl
E = F'4 2BA(Cl) — IP((Ca) — IPy(Ca) and BE =

N by

With EA(CL) = 3.61 eV, IP{(Ca) = 6.11 eV, IP{Ca) = 11.87 €V,
and E' = 18.34 eV, we obtain E = 7.58 €V or 175 kcal/mole and

Ar K+ Ca*t

Figure 3=-13 Relative effective sizes of Ar, K+, and Ca?™,
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BE(Ca—Cl) == 88 kcal/mole. This calculated value of 88 kcal/
mole may be compared with the experimental value of 113 kcal/
mole. We see that the ionic model for CaCls is not as good as the
ionic model for the alkali halides. This is evidence that the alka-
line earth halides have more ‘‘covalent character’” than the alkali
halides. Thus, it is likely that there are important covalent-bond
contributions to the bond enetgy of CaCla.

Experimental bond energies for a number of alkaline earth halides
are given in Table 3-1.

SUPPLEMENTARY PROBLEMS .

I. Work out the ground-state term for the molecule Nj.

2. Calculate the Be—Cl bond energy in BeCl,. The value of
1Py(Be) is 18.21 V.

3. Discuss the bonding in CO,, CS;, and CSe; in terms of MO
theory. Compare the bond properties of these molecules.
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Triganalfplamr Molecules

4-1 BF;
oron trifluoride has a trigonal-planar structure, with all F—B—F
bond angles* 120°. Boron has 25 and 2p orbitals that bond with
the fluorine 25 and 2p orbitals. A convenient coordinate system for a
discussion of bonding in BF; is shown in Fig. 4-1.

We need only one ¢ valence orbital from each fluorine. We shall
use in the discussion only the 2p orbital, since the molecular orbitals
derived are appropriate for any combination of 25 and 2p. However,
it is probable that the very stable fluorine 2s orbital is not appre-
clably involved in the o bonding. The ionization potential of an
electron in the 25 orbital of fluorine is over 40 eV.

4-2 ¢ MOLECULAR ORBITALS

The ¢ molecular orbitals are formed using the 25, 2ps, and 2p,
boron orbitals, along with the 2p. , 2p., and 2p. orbitals of the
fluorine atoms. We must find the linear combinations of 2p, , 2p,,,
and 2p, that give maximum overlap with 2s, 2p,, and 2p,. The

1 Bond angle is a commonly used term, meaning the angle between ‘‘internuclear
lines.”

106
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2 P

Figure 4-1 Coordinate system for BF.

boron 2s orbital is shown in Fig. 4-2. The combination p., +
2p., + 2p.,) overlaps the 25 orbital. Thus the molecular orbitals
derived from the boron 2s orbital are (using the shorthand z, = 2p.,,

R = 2p.,, and 2. = 2p, -
Y(ob) = C2s + Cza + 75+ 70) 4-1)
Y(oe*) = Ci2s — Ci(2a + 2+ 20) “4-2

The boron 2p, orbital is shown in Fig. 4-3. The combination
(%> — z.) matches the positive and negative lobes of 2,. The molec-
ular orbitals from 2p, are:

‘!"Co'yb) = C52Py aF Cﬁ(zb on ZB) (4"3>
Yoy*) = Gi2p, — Co(zs — 2e) 44

The boron 2p, orbital is shown in Fig. 4-4. A combination
(Re— % — 30 cortrectly overlaps the lobes of 2p.. There is a minor
complication, however: the overlaps of z,, %, and g, with 2p; are not
the same. Specifically, z. points directly at the positive lobe of 2Pz,
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2s+ 2, + 7, + 3,

Figure 4-2 Overlap of the boron 2s orbital with the 2p.
orbitals of the fluorine atoms.

whereas g3 and gz, are 60° displaced from a comparable overlap with
the negative lobe. In order to relate z, to g, and 7., we must find the
fraction of 2p, that can be resolved along the g line. This fraction is
simply cos 60°, or 3. We deduce that the sum 25 + 2. gives the same
overlap with 2p, as z. does alone. Then the proper combination is
(% — %2 — 37.), and the ¢ molecular orbitals from 2p, are:

1;&(9':55) == CQZP.‘D e Clﬂ({a — %Zb = %Zc) (4_5)
W(o*) = Cu2ps — Co(Za — 3% — 32 4-6)
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no net overlap between 2p, + 2,

|

2p, + 2, — 3

c

Figure 4-3 Overlap of the boron 2p, orbital with the 2p,
orbitals of the fluorine atoms.

4-3 T MOLECULAR ORBITALS

The 7 molecular orbitals are formed using the boron 2p, orbital and
the 2p, orbitals of the fluorine atoms. The combination (y, + 3 +
2e) matches the 2p, orbital, as shown in Fig. 4-5. Thus the bonding
and antibonding = molecular orbitals are:

Yl = Ca2p. + Culva =+ 30 + 30) @D
‘P(Tf'z*) == CIEZP: = Ciﬁ(_ya + 9 +.9’c) (4_8>
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b R AR S R

Figure 4—4 Overlap of the boron 2p. orbital with the 2p.
orbitals of the fluorine atoms.

Since we started with three fluorine 2p, orbitals, there are two
more independent linear combinations of ¥a, %, and y,. One satis-

factory pair is (9o — .) and (32 — 29 + 5.). As shown in Fig. 4-6,
" these orbital combinations do not overlap the boron 2p. orbital.
Thus they are nonbonding in BF;, and we have

1
Y(m) = *\/—Eﬁyu — %) (4_9)

Yoy = Vig(y S (4-10)
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IIT
C B
X7
A
\/
NO
.. 2]

p.+y.+ o+,

Figure 4-5 Overlap of the boron 2p. orbital with the 2p,
orbitals of the fluorine atoms.

4-4 ENERGY LEVELS FOR BF;

The molecular-orbital energy-level scheme for BF; is shown in
Fig. 4-7. The fluorine valence orbitals are more stable than the
boron valence orbitals, and so electrons in bonding molecular orbit-
als spend more time in the domain of the fluorine nuclei. The o,
and o, molecular orbitals are degenerate in trigonal-planar molecules
such as BF;. Since this is by no means obvious from Eqgs. (4-3),

(4-4), (4-5), and (4-6), we shall devote a short section to an expla-
nation.
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overlaps have opposite
signs

therefore net
overlap = 0

= -7

net overlap = 0

Vo= Ye— 2yt 1,

x x

Figure 4-6 Two combinations of the fluorine 2p, orbitals
that bave zero overlap with the boron 2p. orbital.

4-5 EQUIVALENCE OF 0, AND 0, ORBITALS
The total ovetlap of the normalized combination VZ(z, — iz, —

3% with 2p, will be called $(o2); the total overlap of (1/v2)
(b — o) with 2p, will be called §(o,). A direct ¢ overlap, such as the
overlap between gz, and 2p, (Fig. 4-8), will be called S(g,,p.). To
evaluate S(o.) and §(g,) in terms of S(p,,p,), we use the following
calculations:
8(o2) = VES 20X — 30 — R dr

= V35, ) + % cos 60°S(ps, ) + % cos 60°S(s, p0)]

= VIO 2] = VIS, 1) (4-11)

$Cay) = \%f@py)(za g
= i[cos 30° $(pe, po) + cos 30° S(ps, por]
_ V3 V3 )  ;
\/2( V3)18€u 21 = VESGr (4-12)

Since the overlaps are the same in ¢, and ¢, and since the com-
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Figure 4-7 Relative orbital energies in BF;.

bining boron and fluorine valence orbitals have the same initial
energies, it follows that o, and o, are degenerate in trigonal-planar

molecules. However, it is worth pointing out that ¢, and o, are not
necessarily degenerate if the bond angles deviare from 120°.
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overlap of z, with 2p,
S(Pa.bg)

Figure 4-8 Standard two-atom o overlap between p orbitals.

4-6 GROUND STATE OF BF;

There are 24 valence electrons in BF; [7 from each fluorine (2522p%),
3 from the boron (25°2p)]. Placing these electrons in the most stable
molecular orbitals, we obtain a ground-state configuration:

25 (25 ) 2500 2(%‘5)2Crfy”)g('frzb)z(vr1)2(7r2)2(ZP%Y(ZPxQz@Pz%f
=0

There are six electrons in o® orbitals to give a total of three o bonds
for BF;; in addition, the two electrons the «.? orbital indicate one 7
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bond. The B—F bond length in BF; is 1.291 A; the B—F bond
energy is 154 kcal/mole.

4-7 VALENCE BONDs FOR BF;

The valence-bond description of the ground state of BF; is com-
parable to the molecular-orbital description. Three equivalent sp?
hybrid orbitals are formed first by mixing together the 25, 2p,, and
2p, boron orbitals, as shown in Fig. 4-9. Each sp? hybrid orbital has
one-third s and two-thirds p character. These three sp? orbitals are
then used to make three electron-pair o bonds with the Jp. fluorine
orbitals. In addition, the 2p, boron orbital can be used to make a =
bond with any one of the three fluorine 2p, orbitals. Thus there are
three equivalent resonance structures for BF;, as shown in Fig. 4-10.
Notice that the three resonance structures move the electron-pair
w bond around the “‘ring’’; this is analogous to having two electrons
in the delocalized .> molecular orbital.

PROBLEM

4-1. Construct the wave functions for the three equivalent sp?
hybrid orbitals.
Solution. It is convenient to use the coordinate system shown in
Fig. 4-1, directing the three sp* hybrid orbitals at atoms , 4, and ¢.
The s, pe, and p, orbitals are used to form the sp® orbitals. Each
hybrid orbital has one-third s character. Of the two p orbitals,
only the p. is used to bond with atom # (p, has zero overlap with ).
Since each sp? orbital has two-thirds p character, the wave function
for spa? is

Wop) = Vis+ Vips

The remaining third of the p, orbital is divided equally between &
and ¢. Since the p, orbital has not been used as yet, and since it
overlaps equally well with & and ¢, we split it up between & and ¢
to complete the two-thirds p character in sp* and sp2.  Choosing

the algebraic signs in the functions so that large and equal lobes
are directed at # and ¢, we have:

Wop) = Vs = Vip. + Vip,
Wsp?) = Vis = Vige — Vip,
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i
X

Figure 4-9 Formation of three sp? hybrid orbitals.
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Figure 4-10 Valence-bond structures for BFs.

The boundary surfaces of sp.2, spu?, and sp* are shown in Fig. 4-9.
Bonding orbitals are combinations of the sp* orbitals and appro-
priate o orbitals of atoms #, &, and ¢

Vo = e#(op®) + 220
cﬂ’(prz) 4+ oo
¥, = C#(‘Wcﬂ) =+ co%e

¥y

4-8 OTHER TRIGONAL-PLANAR MOLECULES

Elements in the boron family are the central atoms in many tri-
gonal-planar molecules. Also, several important molecules and
complex ions containing oxygen have trigonal-planar structures,
among them SO;, NO;~, and COz*~. Bond properties of a number of
trigonal-planar molecules are given in Table 4-1. The BH; mole-
cule, which is presumably trigonal planar, is more stable in a dimeric
form,
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Table 4-1
Properties of Trigonal-Planar Molecules?

Bond Bownd enevgy (BE),

Molecule Bond length, A kecal/mole
BF, B—F 1.201 154
BCl, B—-Cl 1.74 109
BBr, B—Br 1.87 90
BH, B—H 93
B(CH,), B-C 1.56 89
Al(CH,), Al—-C 61
B(OR),P B—OR 1.38 128
S0, S—0 1.43 104
NO,” N—O 1.22

CO* C—-0 1.29

BO,* B-0O 1.38

®Data from T. L. Cottrell, The Strengths of Chemical Bonds, Butter-
worths, London, 1958, Table 11.5.1.
bR = CH; or C,H;; R = H, 1.36A.

BH; 4 BH; — B:Hs

The bonding in diborane BsHg is described in a number of other
sources.!

The B(CHs); and Al(CHs); molecules have trigonal-planar parts.

C C
I |

B\ and /Al\
¢ ¢ c c
The structure around each carbon is tetrahedral, as will be described

in Chapter V.

! See, for example, F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry
Wiley-Interscience, New York, 1962, pp. 200-203; W. N. Lipscomb, Boror Hydrides,
Benjamin, New York, 1963, Chap. 2; C. J. Ballhausen and H. B. Gray, Introducrory
Notes on Molecular-Orbital Theary, Benjamin, New York, 1965, Chap. 7.
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SUPPLEMENTARY PROBLEMS

1. In most cases it is convenient to have a normalized linear combi-
nation of orbitals to bond with a central atom. For example, the
combination appropriate for 2s in a trigonal-planar molecule is

(2o + 25+ 22). The normalized combination is V%(za + 2+ %)

Normalize the combinations (g5 — z.) and (g — %z — 370

2. Show that the molecular-orbital and valence-bond descriptions
of ¢ bonding in a trigonal-planar molecule are equivalent, if, in Egs.
(4-1), (4-3), and (4-5), Ci = Cs = G and C = V3C, = V2C; =
V3Cy. In general, do you expect that G, = C Cs = Cp V3G, =
V202 V2C; = V3G Explain.
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Tetrahedral Molecules

5-1 CH,

he methane molecule, CH,, has a tetrahedral structure. This

structure is shown in Fig. 5-1. With the carbon in the center of
the cube, the hydrogens are then placed at opposite corners of the
cube, as defined by a regular tetrahedron. The origin of the rec.
tangular coordinate system is chosen at the center of the cube, with
the x, ¥, and g axes perpendicular to the faces. All the carbon valence
orbitals, 25, 2p., 2p, and 2p., must be used to form an adequate set of
o molecular orbitals.

The overlap of the four 1s hydrogen orbitals with the carbon 2s
orbital is shown in Fig. 5-2. The linear combination (15, + L +
1s. + lsg) is appropriate. The bonding and antibonding molecular
orbitals are:

1[/((75”) = C12; + CQ(],fa + 1.5”[, “|"':j].J'C ’J[‘ lJ‘d> (5—1)
Y(o*) = G325 — Ci(Lsy + Loy + Lo, + Lsp) (5-2)

The overlap of the four 1s orbitals with the carbon 2p, orbital is
shown in Fig. 53. Hydrogen orbitals 1y, and 1y overlap the
plus lobe, and orbitals s, and 1s, overlap the minus lobe. Thus the
proper combination is (15, + Lep — ls. — 1sg).

120
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Figure 5-1 Coordinate system for CH..

The 2p. and 2p, carbon orbitals overlap the four hydrogen orbitals
in the same way as 2p,. This is shown in Fig. 5-4. The linear com-
binations are (1s, + lsa — 1 — 1s) with 2p,, and (ls, + L5, —
lsy — 1so) with 2p.. The molecular orbitals are given below.

V(o) = G2p. + Co(lsa + Loy — Loy — Lsg) (5-3)
$(o.*) = G2p. — G(Lsa + 1oy — Lse — Lsg) G4
Yo?) = C2py + Collug + 1sg — Loy — 1s,) (5-5)
Woy*) = Cu2py — Cio(lsa + 1oy — Loy — 1) (5-6)

Wod) = Cups + Cu(Llsa + Lso — 1sp — 152) G-D
l!l(o’,;*) = C152.Pm = Cl(;(l.{a + 15 — 1y — l.l'd) (5-8)
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Is, + 15, + 15, + 15,

Figure 5-2 Overlap of the carbon 2s orbital with the is
orbitals of the hydrogen atoms.

5-2 GrouND staTE or CH,

The molecular-orbital energy-level scheme for CHy is shown in
Fig. 55. The o, 6y, and ¢. orbitals have the same overlap in a tetra-
hedral molecule and are degenerate in energy. This is clear from the
overlaps shown in Figs. 5-3 and 5-4.

There are eight valence electrons in CHs because carbon is 25227
and each of the four hydrogens contributes a 1s electron. Thus the
ground state is

CDLCICDICO IS
Thete are four ¢ bonds in CH,. The average C—H bond energy is
99.3 kcal/mole. The C—H bond length in CH, is 1.093 A.

5-3 THE TETRAHEDRAL ANGLE

The H—C—H bond angle in CHy is 109°28’. We can calculate the
tetrahedral angle by simple trigonometry. First, we place the CH,
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I, + 1s, — 1, — 1s,

Figure 5-3 Overlap of the carbon 2p. orbital with the 1s
orbitals of the hydrogen atoms.

Ls, + L5, — 1s, — 1s, ' I, +1s, — 1s, — Ls

d

Figure 5-4 Overlap of the carbon 2p. and 2p, orbitals with
the 1s orbitals of the hydrogen atoms.
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Figure 5-5 Relative orbital energies in CH,.

molecule in a unit cube, as shown in Fig. 5-6. The lengths of the
sides defining the Ho—C—H, angle 0 are obtained by using the

Pythagorean theorem. Thus we have the result
G99

b_v3 or 6= 109°28

€Os ==
3

2
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Figure 5-6 Unit-cube model for evaluating the tetrahedral
angle.

5-4 VALENCE BONDS FOR CH4

Four equivalent valence orbitals centered on carbon can be con-
structed by scrambling together the 2s, 2p,, 2p,, and 2p, orbitals.
These equivalent orbitals are called sp* hybrids, and their construc-
tion is shown schematically in Fig. 5-7. Each sp® hybrid orbital has
one-fourth s character and three-fourths p character.

The four sp® orbitals are directed toward the corners of a regular
tetrahedron, and thus are ideally suited for forming four localized
bonding orbitals with the four hydrogen 1s orbitals. The valence-
bond structure for CH, is shown in Fig. 5-8.

PROBLEM
5-1. The normalized wave functions for the four equivalent sp?
hybrid orbitals are listed below (coordinate system as shown in
Fig. 5-7):
#W(opa®) = 35+ Vi@ + pu + 1)

d'(-bea) = %5 + \/§<—Pa: — Py + PZ)
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mixing

P . ,
sp* hybrid orbitals

Figure 5-7 Formation of four sp® hybrid orbitals.

Wopd) = 3o+ VI — 1y — 1)
Wopd) = 3+ VI(—pe + py — p2)

Show how these orbitals are obtained by following the procedure
used to solve Problem 4-1.

Figure 5-8 Valence-bond structure for CH,.
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5-5 OTHER TETRAHEDRAL MOLECULES

Members of the carbon family (carbon, silicon, germanium, tin,
and lead) readily form four o bonds with four adjacent atoms. The
resulting molecules invariably have a tetrahedral structure around

Table 5-1
Properties of Tetrahedral Molecules®

Bond Bond energy (BE),

Molecule Bond length, A kcal/mole
CH, CH,—H 1.093 101(DE)

C~-H 99.3
CF, C~F 1.36 116
CCl, Cc~-Cl 1.761 78.2
CBr, CBr,—Br 1.942 <50(DE)
SiH, Si~H 1.480 76
SiF, Si—F 1.54 135
SiCl, Si—Cl 2.02 91
SiBr, Si—Br 2.15 74
Sil, Si—1I 2.43 56
Si(CH,;), Si—C 1.93 72
Si(C,H, ), Si—C 60
GeCl, Ge~C1 2.08 81
GeBr, Ge~Br 2.32 66
Gel, Ge—1I 2.48 51
SnCl, Sn—Cl 2.30 76
SnBr, Sn—Br 65
Sn(CH,;), Sn—C 2.18
Sn(C,Hy), Sn—C 54
Pb(CH,), Pb—-C 2.30
Pb(C,H,), Pb—C 31
s0,> o) 1.49
C10," C1-0 1.44
NH,* N—H 1.03
BH,~ B—-H 1.22
BF," B-F 1.43

aData from T. L. Cottrell, The Strengths of Chemical Bonds, Butter-
worths, London, 1958, Table 11.5.1.
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the central atom. The bonding in these molecules involves the use
of one s and three p valence orbitals by the central atom, and of an
appropriate valence orbital by each of the four surrounding atoms.

A number of important oxyanions have a tetrahedral structure,
among them SO#~ and CIO;~. Properties of a representative group
of tetrahedral molecules are given in Table 5-1.

SUPPLEMENTARY PROBLEMS

I. Describe the bonding in CF, in terms of molecular orbitals, and
construct a molecular-orbital energy-level diagram. Around which
nucleus or nuclei do the electrons spend more time in the ¢® orbitals?
Do you expect any partial ionic character in the C—F bonds? What
is the dipole moment of CF? Why?

2. Under what conditions are the molecular-orbital and valence-
bond descriptions of bonding in CHjy the same? From Egs. (5-1),
(5-3), (5~-5), and (5-7), construct the valence-bond bonding func-
tions that are shown in Fig. 5-8.

3. What is the structure of BH,—? of NH,t? Are the CH, orbitals
appropriate for these molecules? Discuss the partial ionic character
you might expect in the B—H, C—H, and N—H bonds. Make an
estimate of the coefficients in Eqs. (5-1) through (5-8) that might
be expected for the BH;~, CH,, and NH,+ molecules.
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Trigonal-Pyramidal Molecules

6-1 NH;

familiar example of a trigonal-pyramidal molecule is ammonia,
NH;. The NH; molecule is shown in Fig. 6-1. The three hy-
drogens, which are bent out of the x,y plane, form the base of a tri-
gonal pyramid that has the nitrogen at the apex. Each N—H makes
an angle 6 with g. In addition, N—H, is lined up with the x axis,
and N—H, and N—H, make 30° angles with +y and —y, respec-
tively. Thus NH; is aligned the same way we aligned a trigonal-
planar molecule (Fig. 4-1), but with the three peripheral atoms bent
down.

Bonding in NH; involves the hydrogen 1 valence orbitals and the
nitrogen 25 and 2p valence orbitals. Let us ignore the 2s nitrogen
orbital for the moment, and consider only the 2p-1s bonding.

The overlap of the three hydrogen 1s orbitals with the nitrogen 2p-
‘orbital is shown in Fig. 6-2. The correct combination of 1s orbitals
is (15, + Lsp + 1s.). The o, molecular orbitals are:

’PQTJ’) = 612172 + CZCIJ'a + 15 ‘I" lfc> <6”1>
W(o.*) = C2p, — Co(Lsa + Loy + 1so) (6-2)

The overlap of 2p, with 15 and 1s, is shown in Fig. 6-3.- The cor-
rect combination is (155 — 1s,). The o, molecular orbitals are:

129



130 Electrons and Chemical Bonding

2
Figure 6=1 Coordinate system for NH;.

o) = C2py + C(lss — 1s.) (6-3)

Woy®) = G2py — Gl — Lso) 64

The overlap of 2p, with 1s,, 15, and 1y, is shown in Fig. 6-4. Since

1s and 1s. make an angle of 60° with —x, the overlap of 1s or 1y,

with 2p, is only one-half (cos 60° = 3) that of 1s, with 2p, (see Sec-

tion 4-2). Thus the proper 1s combination is (1sa — ¥ 15y — 3 1sc).
The o, molecular orbitals are:

V(o) = Co2p. + Collsa — § 1oy — 3 1so) (6-5)

W) = Cups — Cllos — % 1oy — 3 1) (6-6)

6-2 OVERLAP IN G, 0, AND 0,

A calculation of the overlap in the 0., 0y, and ¢, molecular orbitals
is easily carried out. The direct overlap of a 2p with a 1s valence
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2p, +1s, + 15, + 15,

Figure 6~2 Overlap of the nitrogen 2p, orbital with the 1s
orbitals of the hydrogen atoms,

orbital is shown in Fig. 6-5; this we shall denote as §(1s,2p,). We
then proceed to express the molecular-orbital overlaps in terms of

S(As,2p.):
S(o.) = S2p. vl—g(lya 4+ 15 + 1s.) dr

= %[CDS 8 $(15,2p,) + cos 8 S(1s, 2p,) + cos 6 §(1s,2p,)]
= V'3 cos 6 S(1s,2p,) -7

1
8$(oy) = S 2p, 75(14} — 1s,) dr
=—1£ [cos 30° sin 8 $(1s,2p,) + cos 30° sin § §(1+,2p,)]

= VE sin 6 §(1s5,2p,) (6-8)
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2p, + 15, — 15,

Figure 6-3 Overlap of the nitrogen 2p, orbital with the 1s
orbitals of the hydrogen atoms.

S$Cos) = S2p NElsy — 31 — S 15 dr

= V'Z[sin 6 §(15,2p,) + cos 60° sin 8 §(1s,2p,) + cos 60° sin 0
- X 5(1s,2p.))
= V2 sin 6 $(1s,2p,) (-9

It is important to note from Egs. (6-7), (6-8), and (6-9) that o,
and o, are equivalent, and therefore their energies will be the same for
any value of . When @ = 90°, of course, we obtain the correct over-
lap values for a trigonal-planar molecule (see Section 4-5):

S(o.) =0
5Co,) = §(oz) = @5‘(11,2}:,)

Let us now investigate the case for an H—N—H bond angle of 90°
(¢ = 90° in Fig. 6-1). Calling the N—H, length unity, the other
pertinent distances given in Fig. 6-6 can be easily obtained by geom-



Trigonal-Pyramidal Molecules 133

2p, + 15, —1s, = s,

Figure 6-4 Overlap of the nitrogen 2p; orbital with the 1s
orbitals of the hydrogen atoms.

$(1s,2p4)

Figure 6-5 Standard two-atom s overlap between an s and a
p orbital.
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Y

z

Figure 6-6 Relative distances in the NH: molecule for an
H—N—H bond angle of 90°.

etry. We see that for ¢ = 90°, cos§ = ? and sin 6 = VZ, Thus,
Eqs. (6-7), (6-8), and (6-9) reduce to
$Co) = $(o) = (o) = § (As,2p,) (6-10)

In other words, the o, a,, and o, molecular orbitals are the same for
¢ = 90°. Thisisno surprise, since the 2ps, 29y, and 29, orbitals make
90° angles with each other, and for ¢ = 90° the 1s orbitals can be
aligned along the x, y, and  axes, as shown in Fig. 6-7. Each hydro-
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z

Figure 6-7 Simple picture of the bonding in NH,, using only
the nitrogen 2p orbitals.

gen overlaps one 2p orbital, as in Eq. (6-10). The total ovetlap in
o, 0y, and ¢ is smaller for any other angle.

6-3 THE INTERELECTRONIC REPULsIONs AND H—N-—H
BOND ANGLE IN NH;

The actual H—N—H bond angle in NH; is 107°, or 17° larger than
the angle predicted for pure 2p-1s bonding. It is probable that the
mutual repulsions of the one nonbonding pair (called a lone pair) and
the three bonding pairs of electrons are responsible for the 17° angle
opening. The four electron pairs must therefore be so arranged as to
minimize these interelectronic repulsions. One way to get the three
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bonding pairs farther apart is to involve the nitrogen 25 orbital in the
bonding. In Fig. 6-8 is shown the overlap of the hydrogen 1s orbit-
als with the nitrogen 2s. Notice that the combination appropriate
for 25 (s, + 15 + 1s.) is the 1s combination in #. [Eqs. (6-1) and
(6-2)]. Thus o, “‘mixes together” with ¢;> and ¢.* to give three
molecular orbitals which we shall call ¢, 6., and ¢.*. This addition
of 25 “‘character’” to the N—H bonding increases the H—N—H
angle from 90° to 107°. You may think of the angle opening by in-
clusion of 25 in the following way: The best H—N—H angle for
“pure’”’ 2p bonding is 90°. The best H—N—H angle for “pure’” 2r
bonding is 120°, since the symmetrical trigonal planar structure al-
lows the best overlap arrangement for three hydrogen 1s orbitals
with a 25 orbital. (The 1s orbitals are as far from each other as pos-
sible and do not compete for overlap of the same portion of the 2s.)
Thus inclusion of 25 character in a “‘pure’’ 2p-bonding scheme in-
creases the H—N—H angle from 90°.

25 + Is, + 1 + 1s,

Y

z

Figure 6-8 Overlap of the nitrogen 2s orbital with the 1s
orbitals of the hydrogen atoms,
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The similar valence-bond idea, particularly appealing, is that the
bonding pairs and the lone pair are in four tetrahedral sp* orbitals.
This structure places the four electron pairs as far away from each
other as possible. The “‘tetrahedral” structure of NH; is shown in
Fig. 6-9. Theslight deviation of the H—N—H bond angle from the
tetrahedral angle of 109° is considered a result of the nonequivalence
of the bonding and non-bonding pairs of electrons.

6—4 BOND ANGLES OF OTHER TRIGONAL-PYRAMIDAL MOLECULES

The H—P—H and H—As—H angles in PH; and AsH; are 94° and
92°, respectively. This probably indicates a high degree of phos-
phorus and arsenic p-orbital character in the three bonding orbitals.
We assume that the mutual repulsions of bonding pairs of electrons
are reduced in going from nitrogen to phosphorus to arsenic. This
is a reasonable assumption, since we know from atomic spectra that
the atomic interelectronic repulsions, in the valence p orbitals, de-
crease in the order N > P > As. The trihalides of nitrogen, phos-
photus, arsenic, antimony, and bismuth are trigonal pyramidal. The
bond angles are all in the 95 to 105° range, as given in Table 6-1.

lone pair

Figure 6-9 Valence-bond structure for NH; using sp?
orbitals for nitrogen.
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Table 6-1
Properties of Trigonal-Pyramidal Molecules®

AB, B—A-B AB bond  AB bond enevgy (BE),

molecule angle, deg length, A keal/mole
NH, 107 1.014 93.4
NF, 103 1.37 65
NCI, 46

PH, 94 1.42 1

PF, 104 117
PCl, 100 2.04 78
PBr, 100 2.20 63

Py 2.47 44
AsH, 92 1.52 59
AsF, 102 1.71 111
AsCl, 98 2.16 70
AsBr, 2.33 58
AsL, 2.54 43
SbCl, 104 2.48 67
BiCl, 2.48 67
Bi(CH,), 2.30 31

®Data from T. L. Cottrell, The Strengths of Chemical Bonds, Butter-
worths, London, 1958, Table 11.5.1; L. E. Sutton (ed.), ‘‘Interatomic Dis-
tances,’”’ Special Publication No. 11, The Chemical Society, London, 1958.

6-35 GROUND STATE oF NH;

The molecular-orbital energy-level scheme for NH; is shown in
Fig. 6-10. The o, and o, orbitals are degenerate. The eight valence
electrons give a ground-state configuration of

CALCADRCTIECHE §=0
There are three o bonds. The N—H bond length is 1.014 A, and the
average N—H bond energy is 93.4 kcal/mole. The electrons in the
bonding orbitals spend more time around nitrogen than around the
hydrogens. This means that in the ground state the nitrogen has a
small negative charge and the hydrogens carry a small positive
charge. Thus there are three bond dipoles, as shown in Fig. 6-11.
These three bond dipoles add vectorially to give NHs a net dipole
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Figure 6-11 Contributions to the dipole moment of NH,.
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Table 6-2
Dipole Moments of Some Trigonal-Pyramidal Moleculeg®

Molecule Dipole moment, D
N 1.47
NI;"IZ 0.23
PH, 0.55
PF, 1.03
PCl, 0.79
PBr, 0.61
AsH, 0.15
AsF, 2.82
AsCl, 1.99
AsBr, 1.67
AsL 0.97
SbCl, 3.93
SbBr, 2.48
Sbl, 1.59

2Data from A. L. McClellan, Tables of Experimental Dipole
Moments, Freeman, San Francisco, 1963!

moment. The total dipole moment, 1.46 D, also includes a contri-
bution from the lone-pair electrons in o, as indicated in Fig. 6-11.

Dipole moments for a number of trigonal-pyramidal molecules are
given in Table 6-2.

SUPPLEMENTARY PROBLEMS

1. Why is the dipole moment of NHj larger than the dipole mo-
ment of PHy? Why is the dipole moment of PF; larger than that of
PClg

2. What structure would you expect for CHy~ and H,Ot. Discuss
the bonding in these molecules.
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Angular Triatomic Molecules

7-1 H.O

he most familiar angular triatomic molecule is water, H,O.

The H—O—H bond angle in the water molecule is known to be
105°. We can conveniently derive the molecular orbitals for H.O
by placing the oxygen atom at the origin of an xyg coordinate system.
The two hydrogens are placed in the x,z plane, as shown in Fig. 7-1.
Imagine starting with a linear H—O—H along the z axis and bend-
ing the two hydrogens toward the x axis, until the H—O—H angle 6
corresponds to the observed 105°. It is convenient to bend each
hydrogen the same amount from the g axis, so that the x axis bisects
6. We can go through this procedure for any angular triatomic mole-
cule, independent of the value of §. Thus the ¢ molecular orbitals for
HyO are a representative set.

The valence orbitals involved are 25 and 2p for oxygen and 1s for
hydrogen. The overlaps of the 2p orbitals with the two hydrogen
1s orbitals are shown in Fig. 7-2. From these overlaps, we can write
the following set of wave functions:

Wo?) = C2p. + Co(lsa + 1) -0
Y(oo®) = C2py — C(lsa + 15) (7-2)
Y(ot) = C2p. + Co(lsa — 15) (7-3)
Wo.®) = G2p, — G(lse — 1) (7-4)

I41
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f = 105°

Figure 7-1 Coordinate system for H;0.

The 2p, oxygen orbital has no ovetlap with either Ls, or lg, and
thus it is nonbonding in our scheme. Notice that 2p, is available for
7 bonding, but hydrogens do not have 7 valence orbitals.

The overlap of 25 with 15, and 1s; is shown in Fig. 7-3. The com-
bination (1s, -+ 1ss), which was used in the o, orbitals, is correct for
2s. This means that ¢, mixes with ¢,. The result is three molecular
orbitals—a bonding orbital, an orbital that is nearly nonbonding, and
an antibonding orbital. We shall call these orbitals ¢, ¢, and a.*,
respectively.

The molecular-orbital energy-level scheme is shown in Fig. 7-4,
with the hydrogen 1s orbital placed above the oxygen 2s and 2p
valence orbitals. The o, molecular orbital is seen to be more stable
than the o, owing to the interaction of ¢, with ¢2.
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2p, +1s, — 1s,

2p, + 15, + 1,

Figure 7-2 Overlap of the oxygen 2p. and 2p, orbitals with
the 1s orbitals of the hydrogen atoms.

7-2 GROUND STATE OF H,O

The ground-state electronic configuration of HyO, with eight
valence electrons (two from the hydrogens, 2:2p* or six from oxy-
gen), is therefore
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25+ 1s, + 15,

Figure 7-3 Overlap of the oxygen 2s orbital with the 1s
orbitals of the hydrogen atoms.

CORCADLCARC N §=0

We note that all the electrons must be paired, and H;O is diamag-
petic. There are four electrons in o® orbitals, giving two ¢ bonds.

We might expect the H—O—H bond angle to be 90° if only the
2p. and 2p, orbitals were used in ¢ bonding. That is, a 8 of 90° makes
2p, and 2p. equivalent with respect to overlap with the H valence
orbitals. This is easy to see if we place the two hydrogens along the
x and z axes, as shown in Fig. 7-5. The possibility of the 2s orbital
being involved in bonding is one explanation for the 15° deviation
of the H—-O—H angle from 90°. To demonstrate the angle “‘open-
ing,” it is convenient (as for NHj) to place the eight valence elec-
trons into four sp* hybrid orbitals, as shown in Fig. 7-6. The fact
that the H—O—H angle in water is less than 109° is, according to
this view, a result of the different repulsions of electron pairs in
bonding and nonbonding orbitals. The nonbonding pairs would
repel each other more strongly than the bonding pairs, consistent
with a 105° angle between the bonding pairs.
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Figure 7-4 Relative orbital energies in H,0.

The bond angle in H,S is 92°, much closer to the 90° expected for
pure p bonding. In HjS, it is probable that there is strong 3p-1s
bonding. This is consistent with the fact that the interelectronic
repulsions in 3p orbitals on sulfur are known to be less than the inter-
electronic repulsions in 2p orbitals on oxygen.
The electrons in o® orbitals in HyO spend more time near the oxygen
than near the hydrogens, owing to the larger electronegativity of
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x

Figure 7-5 Simple picture of the bonding in H;0, using only

the oxygen 2p orbitals.

SRS T

R Y

\ lone pairs

Figure 7-6 Valence-bond structure for H,O, using sp® or-
bitals for oxygen.
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5+ 5t
H H

Figure 7=7 Separation of charge in H;O in the ground state.

oxygen. As a result, the hydrogens carry a small positive charge in
the ground state of H:O, as shown in Fig. 7-7.

The H;O molecule has a dipole moment of 1.844 D. The moment is
due to the charge separation described above as well as to lone pairs,
as shown in Fig. 7-8. Each H—O bonc,15+has a small bond dipole mo-

Fasc
munt resulting from the charge separation H—O. Since the HyO mole-

cule is angular, these bond moments add together to give a result-
ant dipole moment.

Table 7-1 gives dipole moments of several angular triatomic mole-
cules.

\O-—-h—
o

total dipole moment

bond dipoles \
H

lone pairs

Figure 7-8 Contributions to the dipole moment of H:O.
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Table 7-1
Dipole Moments of Some Angular Triatomic Molecules®

Molecule Dipole moment, D
H,0O 1.844
H,S 0.92
SO, 1.633
NO, 0.39
0, 0.52

2Data from A. L. McClellan, Tables of Experimental Dipole
Moments, Freeman, San Francisco, 1963.

7-3 ANGULAR TRIATOMIC MOLECULES WITH 7 BONDING: NO

The NO, molecule is an example of an angular triatomic molecule
with both ¢ and = bonding. We place the N of NO, at the origin of
an xyg coordinate system shown in Fig. 7-9. The oxygens are
sitvated in the x,g plane, bent away from the g axis. The O—N—O
angle is . We shall consider the nitrogen 2s and 2p and the oxygen
2p orbitals in constructing the molecular orbitals.

7—4 o ORBITALS

The nitrogen 2s, 2p., and 2p, valence orbitals are used to form o
molecular orbitals with the 2p. and 2p., of the oxygens. The ¢

molecular orbitals are very similar to those we obtained for H,O.
In order of increasing energy, we have o, 0., 0,, 0.*, and o.* (see
Fig. 7-4).

7-5 = ORBITALS
The nitrogen 2p, orbital overlaps the 2p,, and 2p,, on the oxygens,

as shown in Fig. 7-10. The bonding molecular orbital is obtained
by adding the three orbitals together:

Y(m) = C2py + C(ya + 20) -5
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1 Y

@,
;\m

O —y

Figure 7=9 Coordinate system for NO..

The antibonding orbital has a node between O, and N and between
Oy and N:

‘:(’C""y*) = C32Py = C*lC.J’a -+ J’b) (7—6)

The other combination of the 2p, orbitals of O, and O, is
(2py, — 2py,)- This combination has zero net overlap with the
nitrogen 2p,, and is the nonbonding molecular orbiral:

W) = :},3@.; — ) (7-7)

We shall also consider the 2p. orbitals of O, and O, nonbonding in
NO,. Anapproximate energy-level scheme for the molecular orbitals
of NO; is given in Fig. 7-11.
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2?, +y.+

Yo ™ ¥

T

Figure 7-10 The morbital combinations in NO,.
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Figure 7-11 Relative orbital energies in NO..
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7-6 GROUND STATE OF NO3

There are 17 valence electrons in NQ; (five from nitrogen, six from
each oxygen) to place in the molecular orbitals given in Fig. 7-11.
The ground state is

(2-" ﬂ)z(?“r 5)2 (a'ﬂb)z(azb)ﬂ("ryb)z(zp %)2(2}' x,,>2(1"y)2(0' 2) S=3

Since there is one unpaired electron, the NO; molecule is paramag-
netic. Electron-spin resonance measurements have confirmed that
the unpaired electron in the ground state of NO; is in a ¢ orbital.
The ground-state electronic configuration gives two ¢ bonds and
one 7 bond. It is instructive to compare the molecular-orbital bond-
ing scheme with two possible equivalent valence-bond structures
that can be written for NO; (see Fig. 7-12). The resonance between
structutes I and II spreads out the one = bond over the three atoms,
an analogy to the = bonding molecular orbital (see Fig. 7-10). The
unpaired electron is in an sp* hybrid orbital, which is similar to ..
The lone pair in the 2p, system goes from O, to Oy, an analogy to the
two electrons in the m, molecular orbital (see Fig. 7-10).

The N—O bond length in NO; is 1.20 A. This compares with an
N—O distance of 1.13 A in NO. The molecular-orbital bonding

T

I
Figure 7=-12 Valence-bond structures for N02.
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Table 7-2
Properties of Angular Triatomic Molecules®

AB, B—A-B ‘Bond Bond enevgies,
molecule angle, deg Bownd length, A kecal/mole
HO 105 HO—H 0.958 117.5(DE)
O—-H 110.6(BE)
H,S 92 H—-SH . 1.334 90(DE)
: H-S 83(BE)
H,Se 91 H—Se 1.47 66(BE)
H,Te 90 H—Te 57(BE)
HOC1 113 HO-C1 60(DE)
HOBr HO-—Br 56(DE)
HOI HO—-I 56(DE)
OF, 102 O—F 1.41 45.3(BE)
ocCl, 115 0—Cl 1.68 49(BE)
Clo, 117 OCl1~-0 1.484 57(DE)
. Cl-0O 60(BE)
Bro, O-—-BrO 70(DE)
Br-O 60(BE)
NO, 132 0--NO 1.20 72DE)
NOC1 116 Cl—NO 1.95 37(DE)
NOBr 117 Br—NO 2.14 28(DE)
SO, 120 5—0 1.43 119(BE)
SeCl, Se—Cl1 58(BE)
o, 117 0-—-0 1.278
NO," 115 N—-O 1.24

aData from T. L. Cottrell, The Strengths of Chemical Bonds, Butter-
worths, London, 1958, Table 11.5.1; L. E. Sutton (ed.), “‘Interatomic Dis-
tances,’’ Special Publication No. 11, The Chemical Society, London, 1958.



154 Electrons and Chemical Bonding

scheme predicts 15 7 bonds for NO, and only % for the NO in NOy;
thus a longer NO bond in NO; is expected. The O—NO bond-disso-
ciation energy is 72 kcal/mole.

Bond properties for a number of angular triatomic molecules are
given in Table 7-2.

SUPPLEMENTARY PROBLEMS

1. Describe the electronic structures of the following molecules:
(2) O3; (b) ClO,; (c) ClOgt; (d) OF,.

2. What structure would you expect for the amide ion? for SCly
Xng?
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Bonding m Organic Molecules

8-1 1NTRODUCTION

arbon atoms have a remarkable ability to form bonds with
hydrogen atoms and other carbon atoms. Since carbon has one
2s and three 2p valence orbitals, the structure around carbon for full
o bonding is tetrahedral (sp*). We discussed the bonding in CH,,
a simple tetrahedral molecule, in Chapter V. By replacing one hydro-
gen in CH, with a —CH; group, the C;H; (ethane) molecule is ob-
tained. The C;H; molecule contains one C—C bond, and the struc-
ture around each carbon is tetrahedral (sp?), as shown in Fig. 8-1.
By continually replacing hydrogens with —CH; groups, the many
hydrocarbons with the full sp? o-bonding structure at each carbon are
obtained.

Figure 8~-1 Valence-bond structure for C:H;.

20
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In many organic molecules, carbon uses only three or two of its
four valence orbitals for o bonding. This leaves one or two 2p orbit-
als for r bonding. The main purpose of this chapter is to describe
bonding in some of the important atomic groupings containing
carbon with « valence orbitals.

Tt is common practice to describe the ¢ bonding of carbon in
organic molecules in terms of the hybrid-orbital picture summarized
in Table 8-1. The r bonding will be described in terms of molecular
orbitals, and the energy-level schemes will refer only to the energies
of the 7 molecular orbitals. This is a useful way of handling the
clectronic energy levels, since the ¢ bonding orbitals are usually con-
siderably more stable than the = bonding orbitals. Thus the chemi-
cally and spectroscopically “‘active'’ electrons reside in the = molec-
ular orbitals.

8-2 C,H,

The structure of ethylene, C;H,, is shown in Fig. 8-2. The mole-
cule is planar, and each carbon is bonded to two hydrogens and to the
other carbon. With three groups attached to each carbon, we use a
set of sp* hybrid orbitals for ¢ bonding.

Figure 8-2 Coordinate system for C,Hj.
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Table 8-1

Hybrid-Orbital Picture for ¢ Bonding of
Carbon in Organic Molecules

Number of atoms o Bond Structure
bound to carbon ovbitals around carbon
4 sp? tetrahedral
3 sp? trigonal planar
2 sp linear

Figure 8-3 Boundary surfaces of the = molecular orbitals
of CG,H..
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This leaves each carbon with a 2p orbital, which is perpendicular
to the plape of the molecule. We form bonding and antibonding
molecular orbitals with the 2p, valence orbitals, as follows:

o L }
W) = s+ ) (8-1)
W) = »j;(»ca — ) (8-2)

The boundary surfaces of the #* and =* MO's are shown in Fig. 8-3.

8-3 ENERGY LEVELs IN C.H,

The energies of the x> and #* MQ’s are obtained just as were the
energies of the ¢® and o* MO’s of Hy (Section 2-4):

ER@)] = SAYEDIY(E?) dr = 5/ (% + x,)3(xa + x) dr
= {c + 600 (8—3)
EW(a®)] = S (xa — x)3C %0 — x5) 47 = 4o — Bec (8-4)

Thus we have the same type of energy-level scheme for the = molec-
ular orbitals of ethylene as we had for the ¢ molecular orbitals of the
hydrogen molecule. The diagram for C;H, is shown in Fig. 8-4.

8-4 GrouND STATE oF CoH,

Thete are twelve valence electrons in C.H, eight from the two
carbons (2522p%) and one from each hydrogen. Ten of these electrons
are used in o bonding, as shown in Fig. 8-5. Two electrons are left
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to place in the = molecular orbitals. The ground state is ()2,
which gives one w bond. The usual pictures of the bonding in CoH,
are shown in Fig. 8-6.

carbon, 7 orbital 7 molecular orbitals carbony 1 orbital
for CH,
-
S g T
,’ NG — .Bnc
. N
.
’ Ay
£ .
£ .
.

energy
)
o~
PN
'

.
=

2

’,

. x
\—O—,fir + Beo

Figure 8-¢4 Relative r orbital energies in C.H,.

5 g-bonding pairs = 10 electrons

Figure 8=5 The ¢ bonding structure of C.H,.
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8-5 BENT-BOND PicTURE OF CoH,

The C=C bond can be formulated as involving two equivalent
"bent”” bonds, rather than one ¢ and one = bond. One simple way
to construct equivalent bent bonds is to linearly combine the ¢® and
#® molecular orbitals of C;Hy as follows:

4

1 ) b
W= f\h/_'z'[‘!’(.("cc) + 'p("rcc )| (8—5>

1 b by’
Yy = VE‘%#(“M) — YD) (8_6)

The equivalent orbitals ¢4 and ¢, are shown in Fig. 8-7. If the ¢
orbitals used are derived from carbon sp? orbitals (Section 8-2), the
H—C—H and H—C—C bond angles should be 120°.

H H
H H ’
N / 2 -
) o — H cwrO-r e
. . 7 N
(a) simple picture H H
lines indicate electron-pair bonds

() a—= bond orbital picture

Figure 8-6 Common representations of the bonding in C,H..
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Using only valence-bond ideas, we can formulate the bonding in
C:H, as involving four sp® orbitals on each carbon. Two of the sp*
orbitals are used to attach two hydrogens, and two are used to bond
to the other carbon in the double bond. Thus, C:H, would be repre-
sented as shown in Fig. 8-8. This model predicts an H—C—H angle
of 109°28" and an H—C=C angle of 125°16'.

The observed H—C—H angle in C;H, is 117°.  Since the molecule
is planar, the H—C=C angle is 121.5°. These angles are much closer
in size to the 120° angle between equivalent sp? hybrid orbitals than
they are to the tetrahedral hybrid-orbital predictions. However,
certain other molecules containing the C—=C group have X—C=C

Figure 8~7 Equivalent orbitals in C;H;, constructed from the
o? and #? orbitals.
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Figure 8-8 Equivalent orbitals in G;H,, using sp® orbitals on
each carbon.

angles in the neighborhood of 125°.

The multiple bonds in molecules such as N;, H,CO, and C,H; can
be formulated either as equivalent bent bonds or as a combination of
¢ and w bonds. For a more complete discussion of equivalent orbit-
als, the reader is referred elsewhere !

8-6 BOND PROPERTIES oF THE C—=C GrOUD

There are two kinds of bonds in C;H;, C—=C and C—H. Thus we
must know the value of BECC—H) in order to obtain the value of
BE(C==C) from the process

H H
 / E
=C —CH+CH+H+H+H+H &7
SN
H H

1]. A. Pople, Quars. Rev., XX, 273 (1957); L. Pauling, Nature of the Chemical Bond,
Cornell University Press, Ithaca, N.Y., 1960, p. 138 ff.
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The value of BE(C—H) used to calculate bond energies such as C=C,
C=0, etc., is 98.7 kcal/mole, which is very nearly the BE(C—H) in
CH,. Bond energies and bond lengths for a number of important
groups are given in Table 8~2. The values are averaged from several
compounds unless otherwise indicated.

The average C=C bond energy is 145.8 kcal/mole, a value almost
twice as large as the C—C bond energy of 82.6 kcal/mole. The
C=C bond length is 1.35 A, which is shorter than the 1.54 A C—C
bond distance.

Table 8-2
Bond Properties of Organic Groups?

Bownd Bond energy,
Bond length, A kcal/mole
C—-H 1.08 98.7
c-—-C 1.54 82.6
C=C 1.35 145.8
Cc=C 1.21 199.6
C~—C (in C,H,) 1.543 83(DE)
C=C (in C,H,) 1.353 125(DE); 142.9(BE)
C=C (in C,H,) 1.207 230(DE); 194.3(BE)
C—N 1.47 72.8
C=N 147
C=N 1.14 212.6
Cc-0 1.43 85.5
C=0 (in aldehydes) 1.22 176
C=0 (in ketones) 1.22 179
C=0 (in H,CO) 1.21 166
-C—F (in CF,) 1.36 116
C--Si [in Si(CH,),] 1.93 72
C—S (in C,H,SH) 1.81 65
C=S8 (in CS,) 1.55 128
C=Cl 1.76 81
C—Br 1.94 (in CH,Br) 68 (in C,H,Br)
C—I(in CH,I) 2.14 51

2Data from T. L. Cottrell, The Strengths of Chemical Bonds, Butter-

worths, London, 1958, Table 11.5.1.
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87 THE VALUE OF 3., 1N C;H,

The first excited state of C;H, occurs upon excitation of an electron
from =* to x*, giving the configuration (#®)(x*). We see that the
difference in energy between #* and 7* is —28. Absorption of light
at the 1650 A wavelength causes the #* — 7* excitation to take place.
Since 1650 A is equal to 60,600 cm™ or 174 kcal/mole, we have

— 2B = 60,600 cm1 or 174 kcal/mole
and
B = —30,300 cm! or —87 kcal/mole  (8-8)

8-8 H.CO
The simplest molecule containing the C=0 group is formaldehyde,

H:CO. The ¢ bonding in HyCO can be represented as involving sp®
orbitals on carbon. This leaves one 2p orbital on carbon for = bond-

B
Figure 8=9 Orbitals in the H:CO molecule.
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ing to the oxygen, as shown in Fig. 8-9. The = molecular orbitals
are:

¥(7?) = Cuxe + Coxo (8-9)
Y(r:*) = Caxc — Caxo (8-10)

Since oxygen is more electronegative than carbon, we expect (C)? >
(G1)* and (Cy)* > (Ci. Since the oxygen 2p, orbital is used in ¢
bonding, we have the 2p, orbital remaining as a nonbonding MO of
the 7 type. The energy-level scheme expected for the = molecular
orbitals of HyCO is shown in Fig. 8-10.

8-9 orounD staTE oF H.CO

There are twelve valence electrons in H,CO, two from the hydro-
gens, four from carbon, and six from oxygen (2s22p?). Six of these
electrons are involved in ¢ bonding, and two are in the oxygen 2s
orbital as a lone pair. This leaves four electrons for the 7 orbitals
shown in Fig. 8-10. The ground state is (m,?)2(m,)2. There is one

carbon 7-orbital w-molecular orbitals oxygen r-orbitals
for H,CO
: T*
s
7’ A
/. i
3 &
’
' Ay
& A}
s,
2. 0 N
_-.—.O—\ v
\ A

nergy
J
1
1
'
P
'
1
St
>
)
=
<

Figure 8-10 Relative = orbital energies in H:CO.
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carbon-oxygen = bond, along with the ¢ bond, giving an electronic
structure that is commonly represented as shown in Fig. 8-11.

The carbonyl (CG=0) group is present in many classes of organic
compounds, among them aldehydes, ketones, esters, acids, and
amides, The simplest ketone is acetone, (CHy»C=—0. The C=0
bond energy in H;CO is 166 kcal/mole. As C—H bonds are replaced
by C—C bonds, the C=0 bond energy increases. The average C=0
bond energy for aldehydes is 176 kcal/mole; for ketones it is 179
kcal/mole. Each of these average values is more than twice the 85.5
kcal/mole value for the C—O bond energy. The average C—=O bond
length is 1.22 A, which lies between C=0 (R = 1.13 A) and C—O
R =143A).

()

Figure 8-11 Common representations of the bonding in
H,CO.
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8-10 THE #—7"F TRANSITION EXHIBITED BY
THE CARBONYL GROUP

The excitation of an electron from m, to m,* occurs with absorption
of light in the 2700-3000 A wavelength region. Thus the carbonyl
group exhibits a very characteristic absorption spectrum. Since the
transition is from a nonbonding = orbital to an antibonding x orbital,
it is commonly called an # — #* transition.

8-11 C.H,

The structure of acetylene, C;Hs, is shown in Fig. 8-12. The ¢
bonding involves sp hybrid orbitals on the carbons, leaving each
carbon with two mutually perpendicular 2p orbitals for = bonding.
The 7 molecular orbitals are the same as those for a homonuclear
diatomic molecule:

oo Lot )
1/’<7T:5> = ’\/EC a + b) (8 11)
N §
¢<7ry ) - \/'Z"Ua + }’b) (8 12.)
0= L Xa — Xb —
1.0(7% ) = \/Eg a ’ ) (8 13)

2 e H wmmn G, oscmmwmn G swmmmy H = = -

vl

Va Vb

Figure 8~12 Coordinate system for C,H,.
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Y, = \/iio ) (8-14)

The energies of the = molecular orbitals are shown in Fig. 8-13.

8-12 orounD staTE OF C;H,

There are ten valence electrons in CoHp. Six are required for ¢
bonding, and the other four give a ground state (m,*)*(m?)?. Thus
we have three carbon-carbon bonds, one ¢ bond, and two = bonds.
The common bonding pictures for C;Hp are shown in Fig. 8-14.

The bond enetgy of the C=C group, 199.6 kcal/mole, is larger than
that of C—C or C=C, but smaller than that of C=0. The C=C
bond length is 1.21 A, shorter than either C=C or C—C.

8-13 CH,CN

The nitrile group, C=N, is another important functional group
in organic chemistry. The simple compound CHiCN is called ace-
tonitrile; its structure is shown in Fig, 8-15. The = bonding in the
C=N group is very similar to the = bonding in C=C. The usual
bonding pictures are also shown in Fig. 8-15.

carbon, sr-orbitals w-molecular orbitals for C;H, carbony r-orbitals
me* 't

s mmari—s

4 _m .
7 Al
’ A
s \\
’ \
’ s,
o .
sz,Zpy’, ..\2;7,,2192’

cnergy

Figure 8-13 Relative orbital energies in CH..
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C H
T —————

H C

(4)

(&)

Figure 8-14 Common representations of the bonding in CH,.

H Fa
® C N
2 —
H (@)

()

Figure 8-15 Common representations of the bonding in
CH,CN.
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The C=N bond energy, 212.6 kcal/mole, is larger than that of
C=C. The C=N bond length is about 1.14 A.

8-14 C¢H;,

The planar structure of benzene (C¢Hs) is shown in Fig. 8-16.
Each carbon is bonded to two other carbons and to one hydrogen.
Thus we use sp® hybrid orbitals on the carbons for o bonding. Each
carbon has a 2p orbital for = bonding, also shown in Fig. 8-16. With
six 7 valence orbitals, we need to construct six = molecular orbitals
for C¢Hs. The most stable bonding orbital concentrates electronic
density between each pair of nuclei:

\b(‘ﬂ'lb = _\/Lg(%z + e + Re -+ Rd + Re + Z.f) (8—‘15)

The least stable antibonding orbital has nodes between the nuclei:

W) = \/ig@a SO ST S (- [y

Figure 8-16 Structure and the 7 valence orbitals of CsHe.
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The other molecular orbitals' have energies between #* and 7*:

W) = z—kczza t o —te— = ztz) (81D

W) = 5+ 1 — 2 — 2 (8-18)
Y(m®) = i%/;(zza —w—t+2—z—z) (819
W) = o= 0+ = 2 (8-20)

The molecular orbitals for benzene are shown in Fig. 8-17.

8-15 MOLECULAR-ORBITAL ENERGIES IN CgHj

The most stable orbital in benzene is Y(#*). The energy of this
MO is calculated below:
Ely(m)] = SY(P)scd(m®) dr
=3/ et 0+ 2+ 20+ + 2D
X @+t re+gatr+rDdr
§[64c + 128e + 2./ 2300 dr + 2/ 2300 dT + 2./ 23R
X dr + 2 /23024 dr + 2 2Kz dr + 2./ 20Cs dr
+ 22K dr + 2752, dT + 2/ Ra¥C2p dr] (8-21)
In other words, on expansion of the integral, we obtain six cou-
lomb integrals (such as f'2.3C%, 47) and twelve exchange integrals
involving adjacent p orbitals (such as /'7,30z; 47); the other integrals
are exchange integrals involving nonadjacent p orbitals (such as
S %5C. dr). We expect these integrals to be much smaller than the
regular 8's. If we adopt the frequently used Hiickel approximation
" in which such integrals are taken to be zero, we have
EY(m®] = 4c + 28e (8-22)
The energy-level scheme for CgHg is shown in Fig. 8-18.

il

1 The rules for constructing the benzene molecular orbitals are straightforward, but

require symmetry and orthogonality principles that have not been presented in this
book.



top view

Figure 8-17 Top view of the boundary surfaces of the CH;
molecular orbitals,
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m-molecular orbital energies in CgHg

w3t
G Ge — Z.Br'c
m* Tt
§ aem g
sz st
OO=- B
T®
O~ g + e
Figure 8-18 Relative energies of the # MO’s in C:Hs.
PROBLEM

§-1. Show that y(m?) and y(x?) are degenerate in energy, with
E = g.+ Be.. Show that y(x*) and (x*) are degenerate in energy,
with E = 4, — 8... Show that the energy of y(m*) is 4. — 28...

8-16 Grouwp sTATE oF CiH;

There are a total of thirty valence electrons in benzene. Twenty-
four are used in ¢ bonding (six C—C, six C—H bonds), leaving six
for the m-molecular-orbital levels shown in Fig. 8-18. This gives the
ground state (m"P(z)’(m?)?, and a total of three = bonds. FEach
carbon-carbon bond consists of one full ¢ bond and half a = bond.

C=C bond lengths.
The common bonding pictures of benzene are shown in Fig. 8-19.

8-17 =rEsoNANCE ENEraY IN CeHj
Benzene is actually more stable than might be expected fot a system
of six C—C single bonds and three C—C x bonds. ‘This added sta-
bility is due to the fact that the electrons in the three = bonds are
delocalized over all six carbons. This is evident both from the molec-
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J-0

Kekule structures

2—-9 -0

Dewar structures

Q2

simple MO picture
Figure 8-19 Common representations of the bonding in

CsH.

ular orbitals shown in Fig. 8-17 and from the valence-bond struc-
tures shown in Fig. 8-19.

In the MO view, the total gain in CsH, stability due to = bonding is
calculated in units of 8,, as follows:

2 electrons (in m®) X 28, = 4B
2 electrons (in ) X e = 26
2 electrons (in 7)) X o = 28

total fﬁ;

If we did not allow the delocalization of electrons in CgH,, we would
have a system of three isolated double bonds (only one of the Kekulé
structures shown in Fig. 8-19). Let us calculate the = bonding sta-
bility of three isolated double bonds.

An electron in the n® orbital of C=C is more stable than an electron
in a carbon 2p atomic orbital by one B, unit (see Section 8-3). With
six electrons in isolated =® orbitals, we have 6 X B., = 68.. The de-
localization of three = bonds in C¢Hs gives an added stability of
86 — 6B = 28. This is the calculated resonance energy in ben-
zene.
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The so-called experimental resonance energy of benzene is obtained
by totaling the bond energies of the C—C, C==C, and C—H bonds
present and comparing the total with the experimentally known
value for the heat of formation of C¢Hs. The difference indicates
that benzene is about 40 kcal/mole more stable than the sum of the
bond energies for a system of six C—H, three C—C, and three isolated
C==C units would suggest.

The value of B, derived from the experimental resonance energy is
therefore —20 kcal/mole. This value differs substantially from the
value of —87 kcal/mole obtained from the absorption spectrum of
CoHs. It isa general result that the resonance-energy B’s are much
smaller than the spectroscopic §'s.

SUPPLEMENTARY PROBLEMS

1. Calculate the energies of the = molecular orbitals for CoHs.
2. Give the “‘bent-bond’’ descriptions of C:Hz; of HyCO; of HCN.
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Bonds Involving d
Valence Orbitals

9-1 INTRODUCTION

here are many structures in which the central atom requires one

or more 4 valence orbitals to complete a set of ¢ bonding orbitals.
The most important of these structures are square planar, trigonal
bipyramidal, square pyramidal, and octahedral; examples are shown
in Fig. 9-1, Transition-metal ions have available a very stable set of
d valence otbitals. The bonding in complexes formed between tran-
sition-metal ions and a large number of molecules and other ions un-
doubtedly involves 4 orbitals. In this chapter we shall describe the
bonding between metal ions and ligands' in certain representative
metal complexes.

9-2 THE ocTAHEDRAL coMpLEX Ti(H:0)e*t

The Ti** ion forms a stable complex ion with six water molecules.
The structure around the Ti** ion is octahedral, as shown in Fig. 9-2.

1 Groups attached to metal ions in complexes are called ligands.

176
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3+
F NH,
F F H,N NH
A Y4 /__-—-/ ¢
/ N / / \ /
/ S 7 / Co 4
N 1N/
For F HN T TNH,
F NH,
octahedral
0]
F C Cl
Fo oo F Oc cl
N
// /77 //\ o~ //‘ Tes
S By ) Fe——3~co P =—=3eC
/ \/ o - /, g = s
| < ocC cl
_ C cl
square pyramidal 0]
trigonal bipyramidal
2__
¥F_ _____F NC__ . CN
/ / / ; /
y Xe / / Ni /
, , LN\
F=—=-=-= F NC™==— ™ =°CN

square planar

Figure 9-1 Examples of structures in which d erbitals are
used in bonding.
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Figure 9-2 Coordinate system for Ti(H:0)s ™.

The titanium has five 34, one 4s, and three 4p valence orbitals that
can be used in constructing molecular orbitals. Each water molecule
must furnish one ¢ valence orbital, which, in accord with the dis-
cussion in Chapter VIII, is approximately an sp® hybrid orbital. We
shall not specify the exact s and p character of the water ¢ valence
orbital, however, but simply refer to it as o.

The metal orbitals that can form ¢ molecular orbitals are 3d2_2,
3d.2, 4s, 4p., 4py, and 4p.. Since the sign of the 4s orbital does not
change over the boundary surface, the proper linear combination of
ligand orbitals for 4s is

a1+ oy o3+ 04 + 05 + 0 (9-1)

This is shown in Fig. 9-3. The wave function for the molecular
orbital involving the metal 45 orbital is therefore

Yoo = ads + o1+ o3+ o3 + o4 + 05 + 06) -2

We find the other molecular orbitals by matching the metal-orbital
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1
OH

OH,
|
1

4s+atertotoatato

Figure 9-3 Overlap of the titanium 4s orbital with the ¢
orbitals of the water molecules.

Iobes with ligand ¢ orbitals that have the proper sign and magnitude.
This procedure is shown in Fig. 9-4. The wave functions are:

Wow) = cdp. + cior— o) 03]
Vo) = adp, + o — o) 94
V(o) = cdp.  + clos — as) (9-5)
Yoz ) = cdde_p + oo — o2+ 03 — o) (9-6)

Wo2) = o3dz:  + (205 + 206 — 01— 62 — 03 — a4)
oD

9-3 ENERGY LEVELs IN Ti(H,O)¢#+

Figure 9-4 shows 4p., 4fy, and 4p, to be equivalent in an octahedral
complex; on this basis the o, ¢y, and o, molecular orbitals are de-
genetrate in energy. Although it is not obvious from Fig. 9-4, the
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H,

4p, + o5 — a6

4Pz+0'1_ﬂ'3

4py 4+ o2 — o4

3“’:‘2—# +o1—or+ o3 — o4

OH,

e+ 206+ 200 — 61 — 02 — 03 — Ga
(3d, = 22 — 2 — ?)
Figure 9-4¢ Overlap of the titanium 3d and 4p ¢ orbitals with
the o orbitals of the water molecules.
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3d2_y2 and 3d.2 orbitals are also equivalent in an octahedral complex,
and o2 and o2 are degenerate in energy. We shall solve a problem
at the end of this chapter to prove the equivalence of 3dz_,2 and
342. Finally, we see that, including the o, orbital, there are three
sets of ¢ molecular orbitals in an octahedral complex: o;; o4, 0y, 023
and o2_,2, 0.2

We have used all but three of the metal valence orbitals in the o
molecular orbitals. We are left with 3d,., 3d,., and 3ds. These
orbitals are situated properly for = bonding in an octahedral com-
plex, as will be discussed later. However, since water is not a good
7 bonding ligand, we shall consider that the 34, 3d,., and 3d,, orbit-
als are essentially nonbonding in Ti(H:O)¢+. The three 4. orbitals
are clearly equivalent in an octahedral complex, and we have the
degenerate set: my., Ty, Tay.

In order to construct an energy-level diagram for Ti(H:O)dt, we
must know something about the relative energies of the starting
orbitals 34, 4s, 4p, and om,0. In this case, om0 is more stable than
any of the metal valence orbitals. This is fairly general in metal
complexes, and in energy-level diagrams the ligand o valence orbitals
are shown to be more stable than the corresponding metal valence
orbitals. It is also generally true that the order of increasing energy
for the metal valence orbitals in transition-metal complexes is
nd < (n+ s < (n+ Dp.

The energy-level diagram for Ti(H,O)¢** is shown in Fig. 9-5.
There are three sets of bonding orbitals and three sets of antibonding
orbitals. The virtually nonbonding =(4) orbitals are less stable than
the bonding o(<) set but more stable than the antibonding ¢(d) set.
The relative energies of the three bonding o sets are not known. The
order given in Fig. 9-5 was obtained from a calculation that is
beyond the level of our discussion.

9-4 GrounD sTaTE OF Ti(H,O)e*t

We must count every electron in the valence orbitals used to con-
struct the diagram in Fig. 9-5. The complex is considered to be com-
posed of Ti** and six water molecules. Each of the six ¢ valence
orbitals of the water molecules furnishes two electrons, for a total of
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Ti orbitals Ti(H,0) 2 orbitals H,0 orbitals

energy

Figure 9-5 Relative orbital energies in Ti(H,0)21,

twelve. Since the electronic structure of Ti** is (34)!, we have a
total of thirteen electrons to place in the molecular orbitals shown
in Fig. 9-5. The ground state of Ti(H.O)" is therefore

(0202 (0120.2)° (0t 22,2 ()t S=3
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There is one unpaired electron in the #(4) level. Consistent with
this ground state, Ti(H,O)¢t is paramagnetic, with § = .

The electrons in ¢ bonding orbitals are mainly localized on the
water molecules, since the ¢ valence orbital of H,O is more stable
than the metal orbitals. The nonbonding and antibonding orbitals,
on the other hand, are mainly located on the metal. We shall focus
our attention in the sections to follow on the molecular orbitals that
are mainly based on the metal and derived from the 34 valence
orbitals.

9-5 THE BELECTRONIC sPECTRUM 0F Ti(H,0)s*+

The difference in energy between ¢*(d) and «(d) is called A or
10Dg. Excitation of the electron in x(d} to ¢*(d) occurs with ab-
sorption of light in the visible region of the spectrum, and Ti(HoO)s*t
is therefore colored reddish-violet. The electronic spectrum of
Ti(H:O)e** is shown in Fig. 9-6. The maximum absorption occurs
at 4930 A, or 20,300 cm~L. The value of the splitting A is usually ex-
pressed in cm™! units; thus we say that Ti(H:O)é* has a A of 20,300
cm,

The colors of many other transition-metal complexes are also due

e

to such "4~ transitions.

20,300 cm™!

——— absorption ———

p, em ! —

Figure 9-6 The absorption spectrum of Ti(H,0)s'* in the
visible region,
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9-6 VALENCE-BOND THEORY FOor Ti(H.O)et

The localized bonding scheme for Ti(H,O)#t is obtained by first
constructing six equivalent hybrid orbitals that are octahedrally
directed. We use the six o valence orbitals of Ti for this purpose:
3ds2y2, 3d:2, 45, 4Ps, 4Py, and 4p.. Thus we want to construct six 4%sp®
hybrid orbitals, each with one-third 4 character, one-sixth s char-
acter, and one-half p character.

Referring back to Fig. 9-2, let us form linear combinations of
the 4, 5, and p valence orbitals that direct large lobes at the six
ligands. We first construct the orbitals that are directed toward
ligands (& and (&. We shall call these orbitals ¥5 and s, respec-
tively. The metal orbitals that can o bond with (& and (&) are 3d.2,
4s, and 4p,. Choosing the coeflicients of the 3d.2, 45, and 4p, orbitals
so that 5 and s have the desired 4, s, and p character, we obtain the
following hybrid-orbital wave functions:

1 1 1
= e 2 — —— P —8
b= 3k Tt st ©9-8)
IR RS BN .

The positive coefficient of 4p, in ¥; directs a large lobe toward (),
and the negative coefficient of 49, in s directs a large lobe toward (8.

The orbitals directed toward (O) and (3) are constructed from the
3d2 2,342, 4s and 4p, metal orbitals. The orbitals directed toward @
and (® are constructed from the 3d:2_,2, 342, 4s, and 4p, orbitals.
The coeflicients of 4s and 4p pose no problem, but we have to divide
the one-third 4 character in each hybrid orbital between 342 and
3d2_p. We see from Eqs. (9-8) and (9-9) that we have “‘used up’’
two-thirds of the 34.2 orbital in 5 and ¥s. Thus we must divide the
remaining one-third equally among Y1, ¥s, ¥3, and ¥, This means
that each of ¥, s, ¥3, and ¥, has one-twelfth 34,2 character and one-
fourth 34,2, character. Choosing the signs of the coefficients so
that a large lobe is directed toward each ligand in turn, we have:

Ebl = % 3d12—y2 - — 3d + — 4s +

\/ \/ \/u 4p,  (9-10)



Bonds Involving d Valence Orbitals 185

Yo = 1 Sl — \/1_ W S \f \f (9-11)
1
= ‘_" gt T T — dzﬂ — - T = y o
Yi= —13ds \/ﬁ 3de + \/5 4s o 4p,  (9-13)

These six localized 4%p® orbitals are used to form electron-pair bonds
with the six water molecules. The valence-bond description of the
ground state of Ti(H;O)¢™ is shown in Fig. 9-7. The unpaired elec-

3d 4s 4p

» " " 1" ol 1
4 4 1414
|| I I ]
0O O 0 0O 0 O
H, H, H, H, H, H,

Figure 9-7 Valence-bond representations of Ti (H20)e* .
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tron is placed in one of the 4 orbitals that has not been used to con-
struct hybrid bond orbitals. This simple valence-bond orbital dia-
gram is also shown in Fig. 9-7.

9-7 CRYSTAL-FIELD THEORY FOR Ti(H.O)s*+

In the crystal-field-theory formulation of a metal complex, we
consider the ligands as point charges or point dipoles. The crystal-
field model is shown in Fig. 9-8. The point charges or point dipoles
constitute an electrostatic field, which has the symmetry of the com-
plex. The effect of this electrostatic field on the energies of the
metal 4 orbitals is the subject of our interest.

Let us examine the energy changes in the 34 orbitals of Ti**+ that
result from placement in an octahedral field of point dipoles (the
water molecules). First, all the 4 orbital energies are raised, owing
to the proximity of the negative charges. More important, however,
the two orbitals (342, 34,2_?) that point directly at the negative
charges are raised higher in energy than the three orbitals (34..,

Figure 9=8 An octahedral field of point charges.
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free ion octahedral crystal field

Figure 9-9 Splitting of the metal d orbitals in an octahedral
crystal field.

3dys, 3dx) that are directed at points between the negative charges.
Thus we have a splitting of the five 4 orbitals in an octahedral crystal
field as shown in Fig. 9-9. It is convenient to use the group-theoret-
ical symbols for the split 4 levels. The 3d. and 34,2_2 orbitals form
the degenerate set called ¢, and the 3d.., 34,., and 34, orbitals form
the degenerate set called #. The separation of ¢ and 7, is again desig-
nated A or 10Dyg.

The one 4 electron in Ti** is placed in the more stable #; orbitals in
the ground state. The excitation of this electron from # to ¢ is re-
sponsible for the spectral band shown in Fig. 9-6,

9-8 RELATIONSHIP OF THE GENERAL MOLECULAR-ORBITAL
TREATMENT TO THE VALENCE-BOND AND CRYSTAL-FIELD THEORIES

The valence-bond and crystal-field theories describe different parts
of the general molecular-orbital diagram shown in Fig. 9-5. The ¢
bonding molecular orbitals are related to the six 4%sp® bonding orbit-
als of the valence-bond theory. The valence-bond theoty does not
include the antibonding orbitals, and therefore does not provide an
explanation for the spectral bands of metal complexes. The £ and
¢ levels of the crystal-field theory are related to the #(4) and o*(d)
molecular orbitals. A diagram showing the relationship between
the three theories is given in Fig. 9-10.
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crystal-field splitting related to splitting between o*(d) and w(d) molecular orbitals

Tz

o gt Tz p*
e _T_m_

Tyz

ENErgy —i=
gh“ ] [ s
:gh"‘
o
:? E

valence bond orbitals related to o-bonding molecular orbitals
b
ay s

0',*’::: o,

d 5 P
o‘,zb : : o'zu_"zb
L L L L LL

dsph
Figure 9-10 Comparison of the three theories used to de-
scribe the electronic structures of transition-metal complexes.

9-9 TYPES OF # BONDING IN METAL COMPLEXES

The 4., 4., and d,, orbitals may be used for = bonding in octa-
hedral complexes. Consider a complex containing six chloride
ligands. Each of the 4, orbitals overlaps with four ligand = orbitals,
as shown in Fig. 9-11. In the bonding orbital, some electronic
charge from the chloride is transfetred to the metal. We call this
ligand-to-metal (L — M) = bonding. The = orbitals based on the
metal are destabilized in the process and are made antibonding.

If the complex contains a diatomic ligand such as CN—, two types
of = bonding are possible. Recall from Chapter II that CN— has
filled 7* and empty «* molecular orbitals, as shown in Fig. 9-12.
The occupied #* orbitals can enter into L — M = bonding with the
34z, 3dye, and 3dy, orbitals. In addition, however, electrons in the
metal 7(d) level can be delocalized into the available =* (CN™)
orbitals, thus preventing the accumulation of too much negative
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Figure 9-11 Overlap of a d, orbital with four ligand =
orbitals in an octahedral complex.

charge on the metal. This type of bonding removes electronic den-
sity from the metal and is called metal-to-ligand (M — L) = bonding.
It is also commonly called back donation or back bonding. Back dona-
tion stabilizes the #(d) level and makes it less antibonding. Both

types of = bonding between a 4, orbital and CN~ are shown in Fig.
9-12.

9-10 SQUARE-PLANAR COMPLEXES

A simple square-planar complex is PtCl#~. The coordinate system
that we shall use to discuss the bonding in PtCl?~ is pictured in
Fig. 9-13.

The metal valence orbitals suitable for ¢ molecular orbitals are
5dz2_2, 5d:2, 65, 6ps, and 6p,. Of the two 4 o valence orbitals, it is
clear that 54;? 2 interacts strongly with the four ligand ¢ valence
orbitals and that 54, interacts weakly (most of the 54.* orbital is
directed along the z axis).

The 54, 5dys, and 5d., orbitals are involved in = bonding with the
ligands. The 54, orbital interacts with x valence orbitals on all four
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de—r o+
5
Figure 9-12 Types of = bonding between CN~ and a metal
d, orbital.

ligands, whereas 54,. and 5d,, are equivalent and interact with only
two ligands. The overlap of the metal 54 orbitals with the valence
otbitals of the four ligands is shown in Fig. 9-14.

We can now construct an approximate energy-level diagram for
PtCl#~. We shall not attempt to pinpoint all the levels, but instead
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Figure 9~13 Coordinate system for PtCl~.

to recognize a few important regions of energy. A simplified energy-
level diagram for PtCl~ is shown in Fig. 9-15. The most stable
orbitals are ¢ bonding and are located on the chlorides. Next in
order of stability are the = molecular orbitals, also mainly based on
the four chlorides. The molecular orbitals derived from the 54
valence orbitals are in the-middle of the diagram. They are the anti-
bonding partners of the ¢ and = bonding orbitals just described.

We can confidently place the strongly antibonding o*:>_,2 highest.
We can also place my* above 7%, 4., since 34, interacts with all four
ligands (see Fig. 9-14). The weakly antibonding ¢.2* is believed to
lie between mp,* and 7%, .. However, regardless of the placement of
o2*, the most important characteristic of the energy levels in a
square-planar complex is that one 4 level has very high energy
whereas the other four are much more stable and bunched together.,

Stnce Pt** is 54° and since the four chlorides furnish eight ¢ and
sixteen = electrons, the ground state of PtCl?~ is

COLCIR G CurD L €D §=0

The complex is diamagnetic since the eight metal valence electrons
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49—0'1*02“03_0'4

daypt o — o+ 01— a4
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d,, (4 ligand wr orbitals) d, = d,, (2 ligand = orbitals)

Figure 9-14 Overlap of the metal d valence orbitals with the
ligand valence orbitals in a square-planar complex,
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Figure 9-15 Relative orbital energies in PtCl:—

ate paited in the more stable 4 levels. It is easy to see from the
energy-level diagram that the best electronic situation for a square-
planar complex is 4% This observation is consistent with the fact

that the /% metal ions, among them Nitt, Pd2+ P+, and Audt,
form a great number of square-planar complexes.

5
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9-11 TETRAHEDRAL COMPLEXES

A good example of a tetrahedral metal complex is VCly, the co-
ordinate system for which is shown in Fig. 9-16. We have already
discussed the role of s and p valence orbitals in a tetrahedral mole-
cule (Chapter V). The 45 and 4p orbitals of vanadium can be used to
form o molecular orbitals. The 34.., 34y, and 34, orbitals ate also
situated properly for such use. In valence-bond language, 54 and
sp?® hybrid orbitals are both tetrahedrally directed. The 3d.*_,2 and
34 orbitals interact very weakly with the ligands to form = molec-
ular orbitals.

The simplified molecular-orbital energy-level diagram for VCl; is
shown in Fig. 9-17. Again we place the stable ¢ bonding levels
lowest, with the 7 levels, localized on the chlorides, next. The anti-
bonding molecular otbitals derived from the 34 valence orbitals are
split into two sets, those based on 3d.., 34,., and 34, being less stable
than those based on 342 and 3d2_,2. We shall designate A; as the
difference in energy between ¢*(4) and #*(d) in a tetrahedral com-
plex.

With eight ¢ and sixteen  valence electrons from the four chlorides

Figure 9-16 Coordinate system for VCl,.
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Figure 9-17 Relative orbital energies in VCI,

and with one valence electron from V4t (34%), the ground state of
VCL; is

(PR DE  § =%
The paramagnetism of VCl, is consistent with the ground state, there
being one unpaired electron.
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Table 8-1
Values of A for Representative Metal Complexes

Octahedral ] Octahedral

complexes A, cmt complexes A, cmt
Ti(H,0)* 20,300° Co(H,0)* 18,200°
TiF > 17,000 Co(NH,) > 22,900°
V(H,0),* 17,850° Co(CN)* 34,8004
V(H,0)* 12,400° Co(H,0)* 9,300°
Cr(H,0).* 17,400°¢ Ni(H,0)2* 8,500¢
Cr(NH,) 21,600° Ni (NH,) 2 10,800°
Cr(CN)* 26,6004 RhCl*> 20,300°
Cr(CO), 34,1504 Rh(NH,) 3" 34;100°¢
Fe(CN),* 35,0004 ‘RhBrSS‘ 19,000°¢
Fe(CN)g* 33,8004 IrCl % 25,000°¢
Ir(NH,) 3 40,000°

Tetvahedral complexes A, em™t

vCl, 9000°

CoCl,2 3300°

CoBr * 2900°

Col* 2700*

Co(NCS) 2 4700"
Squave -planar Total
complexes® A,, cml Ay om™ Ay, em™ A, cmtl
PdC12 19,150 6200 1450 26,860
PdBr,> 18,450 5400 1350 25,200
PtC1,2 23,450 5900 4350 33,700
PtBr 2 22,150 6000 3550 31,700
Ni(CN),2 24,950 9900 650 35,500

(Footnotes appear on next page)
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Excitation of the electron in 7*(d) to e*(d) is accompanied by light
absorption, with a maximum at 9000 cm™. Thus A, for VCl, is
9000 cm™.

9-12 THE VALUE OF A

The splitting of the molecular orbitals derived from metal 4 val-
ence orbitals involves a quantity that is of considerable interest when
discussing the electronic structures of metal complexes. The A values
for a representative selection of octahedral, square-planar, and tetra-
hedral complexes are given in Table 9-1. The value of A dependsona
number of variables, the most important being the geometry of the
complex, the nature of the ligand, the charge on the central metal
ion, and the principal quantum number » of the 4 valence orbitals.
We shall discuss these variables individually.

Geometry of the Complex

By extrapolating the data in Table 9-1, we may estimate that,
other things being equal, the total d-orbital splitting decreases as
follows:

square planar > octahedral > tetrahedral
1.34¢ Ay 0.45A0

In the molecular-orbital theory, the d-orbital splitring is interpreted
as the difference between the strengths of ¢ and 7 bonding as meas-
ured by the difference in energy between the ¢* and « (or 7*) molec-
ular orbitals. The tetrahedral splitting is smallest because the 4
orbitals are not involved in strong ¢ bonding. In both octahedral
and square-planar complexes, 4 orbitals #re involved in strong ¢ bond-

2C. J. Ballhausen, Introduction to Ligand Field Theory, McGraw-Hill,
New York, 1962, Chap. 10.

bH. Bedon, S. M. Horner, and 8. Y. Tyree, Inorg. Chem., 3, 647 (1964).

€C. K. Jgrgensen, Absovption Spectra and Chemical Bonding, Pergamon,
London, 1962, Table 11.

dH. B. Gray and N. A. Beach, J. Am. Chem. Soc., 85, 2922 (1963).

©H. B. Gray, unpublished results.

f Averaged from values in Ref. ¢ and in F. A. Cotton, D. M. L. Good-
game, and M. Goodgame, J, Am. Chem. Soc., 83, 4690 (1961).

&H. B. Gray and C. J. Ballhausen, J. 4m. Chem. Soc., 85, 260 (1963).
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ing, but the total square-planar splitting (A; + A, ++ Ag) will always

“be larger than the octahedral splitting since the 4,. and 4, orbitals
interact with only two ligands in a square-planar complex (as op-
posed to four in an octahedral complex; see Fig. 9-11).

Nature of the Ligand: the Spectrochemical Series

The spectrochemical series represents the ordering of ligands in
terms of their ability to split the ¢*(4) and w(4) molecular orbitals.
Complexes containing ligands such as CN~ and CO, which are high
in the spectrochemical series, have A values in the range of 30,000
cm™. At the other end of the series, Br— and I~ cause very small
splittings—in many cases less than 10,000 cm™!. We have already
discussed the important types of metal-ligand bonding in transition-
metal complexes. The manner in which each type affects the value
of A is illustrated in Fig. 9-18. We see that a strong ligand-to-metal
o interaction destabilizes o*(d), increasing the value of A. A strong
L — M = interaction destabilizes w(d), decreasing the value of A. A
strong M — L = interaction stabilizes w(d), increasing the value of A,
It is striking chat the spectrochemical series correlates reasonably

metal orbitals molecular orbitals ligand orbitals
7r*
/
a*(d) (L= M]
/,
\I — L)
3 ) TR
u
g - ~ L=
\ T
L ——
A
AY
\\ K

Figure 9-18 The effect of interaction of the ligand o, 7, and
=* orbitals on the value of A.
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well with the n-bonding abilities of the ligands. The good =-
acceptor ligands (those capable of strong M — L 7 bonding) cause
large splittings, whereas the good w-donor ligands (those capable of
strong L — M « bonding) cause small splittings. The ligands with
intermediate A values have little or no w-bonding capabilities.

The spectrochemical-series order of some important ligands is
indicated below:

—CQO, —CN~ > —NO;~ > o-phen > NH3 > OH; > OH—, F~

1 | | 1
| | ! i
| | | 1
i | I |
! | t

m ACCEPLors

> SCN—, Cl™ > Br— > I~

1
|

non-r-bonding ' weak = donors

|
|
i x donors

Charge on the Central Meral Ion

In complexes containing ligands that are not good = acceptors, A
increases with increasing positive charge on the central metal ion.
A good example is the comparison between V(HO)e*, with A =
11,800 cm™!, and V(H,O)ét, with A = 17,850 cm™'. The increase in
A in these cases is interpreted as a substantial increase in o bonding on
increasing the positive charge of the central metal ion. This would
result in an increase in the difference in energy between ¢*(4) and
w(d).

In complexes containing good m-acceptor ligands, an increase in
positive charge on the metal does not seem to be accompanied by a
substantial increase in A. For example, both Fe(CN)¢*~ and
Fe(CN)¢~ have A values of approximately 34,000 cm™. In the
transition from Fe(CN )¢t~ to Fe(CN)¢*~, the m(4) level is destabilized
just as much as the ¢*(4) level, probably the result of a decrease in
M — L = bonding when the positive charge on the metal ion is in-
creased.

N N__
1 o-phen is 7N ~<>

p—
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Principal Quantum Number of the d Valence Orbitals

In an analogous series of complexes, the value of A varies with #
in the d valence orbitals as follows: 34 < 44 < 54. For example, the
A values for Co(NH;)@+, Rh(NHy)¢#t, and Ir(NH;)6*+ are 22,900,
34,100, and 40,000 cm™}, respectively. Presumably the 54 and 44
valence orbitals are better than the 34 in ¢ bonding with the ligands.

9-13 THE MAGNETIC PROPERTIES OF COMPLEXES: WEAK- AND
STRONG-FIELD LIGANDS

We shall now consider in some detail the ground-state electronic
configurations of octahedral complexes containing metal ions with
more than one valence electron. Referring back to Fig. 9-5, we see
that metal ions with one, two, and three valence electrons will have
the respective ground-state configurations #(d), § = §; [«#(D]%, § =
1; and [x(D)P, § = 4. There are two possibilities for the metal 4
configuration, depending on the value of A in the complex. If A is
less than the energy required to pair two 4 electrons in the w(d) level,
the fourth electron will go into the o*(4) level, giving the configura-
tion [r#(dD)P[e*(d)]' and four unpaired electrons (§ = 2). Ligands
that cause such small splittings are called weak-field ligands.

On the other hand, if A is larger than the required pairing energy,
the fourth electron will prefer to go into the more stable 7(d) level
and pair with one of the three electrons already present in this level.
The ground-state configuration of the complex in this situation is
[#(D]*, with only two unpaired electrons (§ = 1). Ligands that
cause splittings large enough to allow electrons to preferentially
occupy the more stable m(4) level are called serong-field ligands.

Tt is clear that, in filling the #(d) and ¢*(4) levels, the configura-
tions &%, 45, 4% and 47 can have either of two possible values of §,
depending on the value of A in the complex. When there is such a
choice, the complexes with the larger § values are called bigh-spin
complexes, and those with smaller § values are called Jow-spin com-
plexes. The paramagnetism of the high-spin complexes is larger
than that of the low-spin complexes. Examples of octahedral com-
plexes with the possible [r(d)[F[c*(d)}¥ configurations are given in
Table 9-2.
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Table 9-2
Electronic Configurations of Octahedral Complexes
Electronic configuration Electronic structure
of the metal ion of the complex Example
3d* [n(d)}* Ti(H0)6™
34° ()] V(H:0),*
3d° [r(@)]® Cr(H:0)™
3d* low-spin [n(@)]* Mn(CN) >
high-spin [m(d)]* [o*(d)] Cr(H20)2
3d® low-spin [7(d)]® Fe(CN)*>
high-spin [T(D]* [o*d)]? Mn(H,0)2*
3d® low-spin [m(@)}® Co(NHa3) >
high-spin [7(@)]*[o*(@)]? CoF,¥
3d"  low-spin [m{d)]° [o*(d)] Co(NO,)*
high-spin [7(d)])’[o*@)])? Co(H.0)*
3d® [m@) [o*@)[? Ni(NH.) 2
3d° [7(@)]® [o*(@)]® Cu(H,0)2

The first-row transition-metal ions that form the largest number of

stable octahedral complexes are Cr*+(4?), Ni**(d%), and Co*(4%; low-
spin). This observation is consistent with the fact that the MO
configurations [7(4)J and [#(d)]® take maximum advantage of the
more stable 7(d) level. The [#(d)]f{¢*(4)]? configuration is stable for
relatively small A values.

The splitting for the tetrahedral geometry is always small, and
no low-spin complexes are known for first-row transition-metal
ions. Thete are many stable tetrahedral complexes of Co?*(3d7),
among them CoCl?™, CO(NCS); —, and Co{OH)2~. Thisis consistent
with the fact that the [#*(d)}4] *(d) configuration makes maximum
use of the mote stable 7*(d) level.

9-14 THE ELECTRONIC SPECTRA OF OCTAHEDRAL COMPLEXES

The Ti(H:O)6** spectrum is simple, since the only 4-4 transition
possible is 7#(d) — o*(d). We must now consider how many absorp-



202 Electrons and Chemical Bonding

tion bands can be expected in complexes containing metal ions with
more than one 4 electron. One simple and useful method is to calcu-
late the splitting of the free-ion terms in an octahedral crystal field.
As an example, consider the spectrum of V{H,O)#t.

The valence electronic configuration of V>* is 34%. The free-ion
terms for 4° are obtained as outlined in Chapter I; they are *F, 1P,
*G, D, and %5, the ground state being *F according to Hund’s rules.

s orbital
4, orbital

=Y

¢, orbitals

P2 orbital

Figure 9-19 Splittings of the s, p, d, and f orbitals in an
octahedral crystal field.
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Since transitions between states that have different § values are for-
bidden (referred to as spin-forbidden), we shall consider the splitting
of only the *F and *P terms in the octahedral field. In order to deter-
mine this splitting, we make use of the fact that the free-ion terms
and the single-electron orbitals with the same angular momentum
split up into the same number of levels in a crystal field. Thatis, a
D term splits into two levels, which we call T; and E, just as the 4
orbitals split into # and ¢ levels.

The s, p, 4, and f orbitals are shown in an octahedral field in F1g
9-19. The splittings we deduce from Fig. 9-19 are summarized in
Table 9-3. We see that the *F term splits into three levels, *4s, 75,
and *T3; the *P term does not split, but simply gives a 4T} level.

The energy-level diagram appropriate for a discussion of the spec-
trum of V(H.O)¢* is shown in Fig. 9-20. The *P term is placed
higher than *F, following Hund’s second rule. The *P term is known
to be 11,500 cn—! above the *F term in the V>* ion. A calculation is
required in order to obtain the relative energies of the three levels
produced from the *F term. The results are given in Fig. 9-20 in
terms of the octahedral splitting parameter A.

The ground state of V(H:O)e** is “4s. From the diagram, we see
that there are three transitions possible: 4y — *Tb; *Ap — *T1(F); and
*4y — *Ti(P). The spectrum of V(H:O)¢+ is shown in Fig. 9-21.
There are three bands, in agreement with the theoretical prediction.

Table 9-3
Splittings Deduced from Figure 9-19

Orbital Number of Level Level
Set levels notation degeneracy
s 1 ax 1
b 1 1 3
d 2 ta 3
e 2
f 3 az 1
tz 3
ty 3
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Table 9-4
Energy Expressions for the Three Possible Transitions of V(H,0)""

Transition ) Energy

4A2 e 4T2 A

4Az e 4T1(F) % A

Ay —~ *Ty(P) S A+ ECF-"P)

According to the energy-level diagram, the energies of the transitions
are those listed in Table 9-4.

Assigning the first band at 12,300 cm™ to the ‘A, —*T; transi-
tion, we obtain A= 12,300 cm™. Using A = 12,300 cm™ and
E(*F — *P) = 11,500 cm™! for V(H,O)s**, the other two transition
energies can be calculated and compared with experiment as shown
in Table 9-5.

The appropriate energy-level diagrams for several important 4
electron configurations are given in Fig. 9-22.

Table 98-5

Comparison between Calculated and Observed Transition Energies
for V(Hz0)e?"

Enevgy values, cm™’

Transition Calculated Observed?
A, - T, (12,300) 12,300
U, — TUF) 22,140 18,500
‘4, — TP 26,260 27,900

8C. K. Jgrgensen, Absorption Spectra and Chemical Bonding, Pergamon,
London, 1962, p. 290.
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PROBLEM

9-1. Show that the 42 and d.2_,2 orbitals are equivalent in an
octahedral complex.
Solution. We shall solve this problem by calculating the total over-
lap of the d:2_,2 and 42 orbitals with their respective normalized
ligand-orbital combinations. The total overlap in each case,
S(d.2_,2) and §(d.2), will be expressed in terms of the standard two-
atom overlap between 42 and a ligand o orbital, as shown in Fig.
9-23. This overlap is called $(s, 4.). From Table 1-1, we see that
the angular functions for 42,2 and d.2 are

d2 = (322 — ) (5-14)
and
d_yp = V3(x? — 5% (9-15)

with ¢ = V/5/(4V'=%). The normalized combinations of ligand
orbitals are

1
dz: 5\73(225 4+ 2% — 71— g — 23— 74) (9-16)
and
de2 g2t i—zt— ) (917
We first evaluate S(d2_,2):

S22 = f\/gf(xz — 9 — e — 50 dr (9-18)

This integral is transformed into the standard two-atom overlap
integral §(o,4,) by rotating the metal coordinate system to coincide
in turn with the coordinate systems of ligands @, @, ®, and (@.

So,da)
Figure 9-23 Standard two-atom ¢ overlap betweena danda
ligand o valence orbital.
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Using the coordinates shown in Fig. 9-24, we obtain the following

transformations:

Mto® Mto® Mto ® Mto (@
R— R X R —x R— =y
X > —Z X —> }’ X — Pd X —r —X
Jy— X y— —X J ) J— 7

Thus we have:

?cw — r— ?c@ — 5o (5-19)
—%(xz — g2 —\—?c(y? - Do (9-20)
-\/Zéc(ﬁ —Drs— \?c(zz — e (9-21)
_‘/Tigxz s _‘/Tgcw — e (920

s

Figure 9-24 Coordinate system for an octahedral complex.
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Adding the four transformed terms, we have

S(e) = S V36222 — 52 = 300 dr = S V33 — o dr
= V38(o,d,) (9-23)

Next we evaluate $(4.2):

$d2) = fe(3z2 — %) L (2754 2%~ 21— R — 3 — %) dr

V3

929

The integrals involving z; and z¢ are simply two-atom ovetlaps, as
shown in Fig. 9-23. Thus we have

S (322 — ) !

2
(2 225) dr = —=85(0,4, 9-25
2\/3( 25+ 2%6) V3 (o,ds) ( )

The integral involving 21, zs, 23, and 24 is transformed iato $(o,4,),

using the transformation. table that was used for §(d:2_2). Thus

=3zt — R =3t — Do (9-26)
—c(3z2 — e — —c(3x? — o o-27)
—e(3g% — 1zs — —c(Bx? — 190 (9-28)
—c(3z2 — Wz —c(392 — Ho 929

Totaling the four transformed terms, we find

1
Szt =) —=(—z1— 22— 75 — %) dr
23
1 1
= — S c(6x% + 62 — 4r)e dr = —= (352 — 2o dr
V3 V3

- %S(a,d,) (9-30)

Finally, combining the results of Eqs. (9-25) and (9-30), we obtain

1

0,d,) = V35(a,d, -
\/gsc A 380, dsy  (9-31)

2
Sdzz = ] a',dg
@ \/§< D+
Then

532 = S(de2y?) = V385(0,d,) (9-32)
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Thus the total overlap of d.2_,2 and 42 with properly normalized
ligand-orbital combinations is the same, and it follows that the
two orbitals are equivalent in an octahedral complex.

SUPPLEMENTARY PROBLEMS

1. Under what conditions are the molecular-orbital and valence-
bond descriptions of the ¢ bonding in an octahedral complex equiva-
lent? Derive the valence-bond functions shown in Fig. 9-7 from the
general molecular-orbital functions.

2. Construct the molecular-orbital and valence-bond wave func-
tions for the ¢ bonding in a square-planar complex. When are the
molecular-orbital and valence-bond descriptions the same?

3. Which complex has the larger A value, Co(CN){#~ or
Co(NHp#+? Co(NH:)* or CoFst? Co(H.O)t or Rh(HO)?
PACL#~ or PeCle—? Pil?~ or PeClLi—?  VCl, or CoClg—2 VCl or
CoFgé—? PdCl# or RhClg? Co(HiO)d** or Co(HO)e?

4. Give the number of unpaired electrons for each of the following
complexes: (2) VE#~; (&) FeCli; (o) NiCl2~ (tetrahedral);
(@) PdCle—; (o) Ca(NHst; (f) Fe(CNDeé—; (g) Fe(CN)F s
() TiFd~; (5 Ni(CN)Z—; () RhClg—; (k) IrCle.

5. Explain why Zn** is colorless in aqueous solution. Why is
Mn?* pale pink?

6. The spectrum of Ni(NH;)¢*+ shows bands at 10,750, 17,500,
and 28,200 cn~'.  Calculate the spectrum, using the appropriate dia-
gram in Fig. 9-22 and assuming that AECF — 3P) = 15,800 cm™ for
Ni**. What are the assignments of the three bands?

7. Plot the energies of the four states arising from *F and *P in the
4% octahedral-field case (see Fig. 9-22) for A values up to 20,000 cm™.
Assume a reasonable value for AE(GF — 3P). Predict the general fea-
tures of the absorption spectra expected for 4% ions in an octahedral
field for A values of 8,000, 12,000, and 18,000 cm™L.
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A Final Message

It is currently popular in elementary courses to discuss chemical
bonding as if the subject were completely understood. My opinion
is that this approach is very dangerous and should be avoided. In
reality, our knowledge of the chemical bond is still at a primitive
stage of development. It is fair to admit that the approximate
theories at our disposal are able to correlate a large body of experi-
mental information, and that, therefore, we have provided a work-
able langnage for the “laws’’ of chemical bonding. However, rbe
theory which gives an exact accounting of the forces that hold atoms
together and allows an accurate prediction of all the properties of
polyatomic molecules is far in the future.
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Appendix

Atomic Orbital Ionization

Energies

Throughout the book we have presented molecular orbital energy
level schemes in a take-it-or-leave-it fashion. To better understand
the diagrams in this book, and to construct similar MO cnergy level
schemes, it is desirable to know the relative energies of the com-
bining valence orbitals. The orbital ionization energies which are
given in Table A-1 were calculated at Columbia by Dr. Arlen Viste
and Mr. Harold Basch. They are the one-clectron ionization encrgies
of the valence orbitals in the atoms given, calculated by finding the
average energies of both the ground-state and ionized-state con-
figurations (that is, the average energy of all the terms within a
particular configuration was calculated).

Table A-1 follows on page 218.
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Table A-1

Orbital Ionization Energles
Atom configurations s or s2p”; energies in 10® em™?

Atom is 2s 2p 3s 3p 4s 4p
H 110
He 198
Li 44
Be 75
B 113 67
C 157 86
N 206 106
O 261 128
F 374 151
Ne 391 174
Na 42
Mg 62
Al 91 48
Si 121 63
P 151 82
S 167 94
Cl1 204 111
Ar 236 128
K 35
Ca 49
Zn 76
Ga 102 48
Ge 126 61
As 142 73
Se 168 87
Br 194 101
Kr 222 115

3d"-14s—~3d""24s 34" 14s—~3d""' 3d"-14p—-3d"-?!

Atom 3d 4s 4p
Sc 38 46 26
Ti 45 49 27
v 51 51 28
Cr 58 53 28
Mn 64 55 29
Fe 70 57 30
Co 76 59 31
Ni 81 61 31
Cu 86 62 32
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Index

AI(CHy);, 118
Alkali halides, 75
Alkaline-earth halides, 100
Angular momentum, 3, 14
total, 22
Angular wave function, 14
Atomic number, 22
Atoms, 1
many-electron, 20
Audt, 193
Aufbau principle, 20

8, 44
in C2H4, 164
in CsHﬁ, 175
Bg, 56
Back bonding (donation), 189, 190
Balmer series, 35
B(CHy);, 118
Bez, 56
BeH.,, 87
Bent bonds, 160
in Csz, 160
BF;, 106
BN, 80
BO, 81
Bohr orbits, 22, 34
Bohr-Sommerfeld theory, 9

Bohr theory, 1
Bonds, 36
covalent, 37
electron pair (Lewis), 37, 39
Bond angle (se¢ Bond properties)
Bond energy (see Bond properties)
Bond length (see Bond properties)
Bond properties, table of diatomic
molecules, heteronuclear, 82
homonuclear, 39
organic molecules, 163
tetrahedral molecules, 127
triatomic molecules, angular, 153
linear, 102
trigonal planar molecules, 118
trigonal pyramidal molecules, 138
Br,, 59

Cs, 56
CaCl,, 102
Charge densities, 12
BeH., 93
CH,CN, 168
CH,, 121, 155
C.Hs, 167
CoH,, 156
C,Hs, 155
CeHs, 170
219
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Cls, 59
ClO2, 128
CN, 81
CN-, 81, 188
CO, 81
COt, 81
CO;%, 117
Codt, 201
CoCl2, 201
Complementarity principle, 11
Co(NCS8), 201
Configuration interaction, o(s) —
a(p), 54, 55, 142
Co(OH) 2, 201
Coordinate bond energy, 77
Coulomb energy, 45
Coulomb integral, 44, 171
Cr3t, 201
Crystal field theory, 186, 188
of effect of octahedral field on or-
bitals, 202
of octahedral field, 186
Css, 59

A, 183, 187
effect of, back bonding, 199
charge on metal, 199
geometry, 197
interaction of molecular orbitals,
198
» quantum number, 200
value of, 196
Diatomic molecules, 36
heteronuclear, 62
homonuclear, 36, 49
Diborane, 118
Dipole, 67
bond, 138, 139, 145
table of molecular dipoles for dia-
tomic, 70

Index

triatomic angular, 148
trigonal pyramidal, 140
Dissociation energy, 100

Eigenfunctions, 13, 14
Eigenvalues, 13
Einstein equation, 9
Electron affinity, 33
Electron diffraction, 11
Electronegativity, 69, 71
Electron spin, 17, 20, 48
Electron waves, 9
Electrostatic energy, 73, 74, 103

of CaCl,, 103
Energy levels, 42

BeHz, 91

BF,, 113

CHy, 124

C.H., 168

C.Hy, 165

CeHsg, 173

COs, 99

diatomic molecules, heteronuclear,

79
homonuclear, 54

H,, 47

H,*, 45

H.CO, 165

H,0, 145

NH;, 139

NGO, 151

octahedral field, 203, 206

PtCly, 2, 143

Ti(H,0)6, 182

VCls, 195
Excited state, atomic, 5

F,, 57
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Ground-state electronic configuration, H,, 61
atomic, 5, 20, 26 Q,, 61
molecular, B,, 56 Group-theoretical symbols, 187
Be, 56
BeH,, 91, 93, 95
BF;, 11
BN 4 H., 36, 46, 47
, 80
BO H,*, 43, 47
, 81 R R
Bra, 59 Hamiltonian operator, 13
c » s H,CO, 164
25
CH,, 122 H,0, 142

Hiickel approximation, 171

gﬁz, 1(552 Hund’s rules, 25
oH 4, Hybridization, 4%p®, 184
CgHsg, 173
Cl,. 59 sd3, 194
25 517, 55
CN, 81 .
. in BeHa, 93
CN-, 81 .
i n CgHz, 167
CO, 81 N
sp2, 115, 116
CO+, 81 .
CO,. 99 in BF;, 114
c 2’58 in CoHy, 157
F52> - in C¢Hs, 170
23 in HyCO, 164
H,, 46 3
Hot 45 sp8, 126
I 2 ’9 bent bonds, 161
» 3 in CH,, 125, 155
Ko, 58 .
Li 55 m C;)He, ]55
2 in H,CO, 164
LiH, 68 .
n H20, 146
Na, 57 Hydrocarbons, 155
Na,, 58 ’
Ne,, 58
NH;, 138
NQ, 81 I», 59
NO+, 81 Interelectronic repulsion, 59, 135
NO,, 152 in H.O, 144
O, 57 in NHs, 135
PtCls?, 191 Internuclear distance, 37
Ti(H.0)6**, 182 Tonic bonding, 73
VCl,, 195 in alkalai halides, 75
Ground-state term, atomic, 25, 27, 35 in LiH, 68

molecular, 60 in triatomic molecules, 100
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Tonic resonance energy, 71
Ionization potentials, 6, 7, 27, 32, 44
orbital, 215

X, 59
Kekulé structure, 174

L — & terms, 22

Liy, 55

Ligands, 176

LiH, 62

Linear combination of atomic orbit-
als, 38

London energy, 75

Lyman series, 8

Magnetic properties, 200
diamagnetism, 48, 191
high-spin complexes, 200
low-spin complexes, 200
magnetic moment, 48
paramagnetism, 48, 183
strong-field ligands, 200

. weak-field ligands, 200

Microstates, 23

- Molecular orbitals, antibonding, 39
BCH2, 90
BFs, 107
bonding, 39
CH4, 121
CoH,, 167
C.H,, 157, 159
CeHs, 170
CO,, 98
coefficients, 66

of BCHZ, 89, 92

degenerate, 55

Index

Hs, 45
H,t, 43
H,CO, 164
H,0, 142, 146
LiH, 65
NH;, 129
NO., 148
octahedral complexes, 178
w, 50
ligand-to-metal = bonding, 188,
190
metal-to-ligand = bonding, 189
o orbitals, 49, 53
square-planar, 190
tetrahedral, 194
Molecular orbital theory, 38

N, 57

Nsy', 57

Na,, 59

Nez, 58

NH;, 129

Ni?t, 193, 201
NO, 81

NO*, 81

NOQ, 148

NO;—, 117

Node, 16
Normalization, 13
Nuclear charge, effective, 33

O, 57
Octahedral complexes, 186
Orbitals, 14, 16, 20, 21

d, 14, 18, 176

7,14, 18

P, 14,17

s, 14, 16

valence, 39
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Organic molecules, 125, 155 Term designation, 23
Overlap, 40, 42 . Term symbols, for linear molecules, 60
of orbitals in, BeH,, 88 Tetrahedral metal complexes, 194

BF;, 108 f. Tetrahedral molecules, 121, 137, 155
CH,, 122,123 Ti(H0)et, 176
CO,, 97 Transition metals, 176
H,0, 143, 144 Triatomic molecules, angular, 142
LiH, 63 linear, 87
NH,, 131 #. Trigonal planar molecules, 106
octahedral complexes, 184 Trigonal pyramidal molecules, 130

square-planar complexes, 192
Ti(H.O)e*+, 179, 180

standard two-atom, 4-¢, 207 Uncertainty principle, 11, 12
p-pCr), 51
p-p(e), 50, 114
sp, 133 Valence-bond theory, BeH,, 93, 95
5-5, 50 BF;, 115, 117
CH,, 125, 126
CH4CN, 164
Pauli principle, 20 CoH,, 164
Pd2+, 193 C2H4, 159
Photons, 9, 10 CaHg, 155
Planck’s constant, 5 CoHs, 174
P+, 193 CQOs,, 100
PrCl, 189 H.CO, 166
H.0, 146
NH;, 137
_ NO., 152
Quantum assumption, 3 octahedral complexes, 187, 182
Quantum jump, 5 Ti(H,O)e**, 184, 185
Quantum number, 7, 14, 20, 22 van der Waals energy, 73, 103
mi, 14, 20, 22 VCl,, 194
ms, 14, 20, 22 V(H,0)e?*, 202
7, 4, 14, 20
Wave function, 12, 13
Radial wave function, 13 angular, 14
Rbs,, 59 radial, 13

Square-planar complexes, 189 Zeeman effect, 9



