

Methods of the Sample Preparation and Interfacial Characterization and for Carbon Fiber Reinforced Plastics (CFRP)

22nd , April, 2019

Research Background

Research Contents

Our research results

Background—Introduction of CF

Carbon fibers (alternatively CF, graphite fiber or graphite fibre) are fibers about 5–10 micrometres in diameter and composed mostly of carbon atoms.

Introduction of CF

Classfication:

PAN (Poly acrylonitrile) -based Carbon Fiber Pitch-based Carbon Fiber Rayon-based Carbon Fiber

Density	1.5-2.0 g/cm ³
Diameter	5-10 μm
Tensile strength	>300 GPa

Production of CF

Carbon fiber reinforced polymeric composites (CFRP)

Interfacial Characterizations

Interfacial chemical structure Interfacial physical structure Thickness Morphology Adhesion strength Residual stress

Research Contents

Our Targets

>To built the quantitative interface characterization methods.

 \geq To find the control or modification methods.

To make clear the relationship between the conposite properties and interface, or the mechanism of action in the interface change.

>To develop effective CFRP sample preparing processes.

Research Contents—Interfacial adhesion characterization

Interfacial adhesion characterization

Microscopic Experimental Methods

Modulus Distribution Characterization

Nanoscale Dynamic Mechanical Imaging

Wetting Characterization

Sessile Drop Method

X

Interfacial Stress Characterization

Raman Spectra

Nature Communications, 2011, 2(1):255

XRD

Technol. Lett. 2000, 72-74

Surface Properties Characterization of CF

Surface Properties	Evaluation Method	
Surface morphology	SEM, AFM, TEM, EDX	
Chemical properties	XPS, FTIR, EDX, AES	
Aggregation state	XRD, Raman	
Surface absorption	BET	

Research Contents——CFRP sample preparing

- 1. Pitch-based carbon fibers are too fragile and easily broken during sample preparation .
- 2. In the micro-debonding method, it's difficult to control the size of resin droplets.
- 3. In the modulus distribution tests, the residual powder of carbon fiber and resin caused by polishing will interfere the measurements of AFM.
- 4. The in-situ Raman test is difficult for CFRP to conduct.
- 5. Analysis of functional groups on the surface of CF through FTIR is a challenge.
- 6. The sample preparation skills are not so mature in micro-debonding test techniques in our research group, especially for pitch-based CF.

Research Contents——**CFRP sample preparing**

>The small scale of the interface region.

≻How to control or modify the CF surface.

≻How to decrease or remove the effect of both CF and resin.

>How to prepare the suitable samples for characterizatin.

Our Research Results

研究背景和研究内容

- 电热效应对CFRPs界面内应力的影响研究
- 3
- 湿热环境对CFRPs界面结合能力的影响研究

有机溶剂对CFRPs热响应的影响研究

碳纤维复合材料(CFRPs)

▶ 应用

https://en.wikipedia.org/wiki/ https://image.baidu.com/

โรл

CFRPs在实际使用中的威胁

https://image.baidu.com/

Īял

电热效应-高电流

Composites Part A, 2011, 42(9):0-1262.

电热效应-低电流

▶ 不同电流下CFRPs拉伸强度

Acta Materiae Compositae Sinica, 2016, 33(10): 2223-2229

湿热效应对复合材料的影响

▶ 湿热环境引起的CFRPs脱层

Journal of Composite Materials, 2016, 50(8).

CFRPs界面研究的必要性

▶ 界面的AFM图像

Composites Science and Technology, 2015, 121

CFRPs界面研究的必要性

Carbon, 2010, 48(11):3229-3235.

CFRPs的界面表征现状

▶ 拉曼光谱
▶ 显微红外光谱
▶ 原子力显微镜

电热效应对CFRPs界面内应力的影响研究

湿热环境对CFRPs界面结合能力的影响研究

有机溶剂对CFRPs热响应的影响研究

电热效应对CFRPs影响的研究现状

试样制备和电热处理

F

拉曼光谱研究微电流对界面内应力影响

• 碳纤维拉曼光谱和内应力关系

拉曼光谱研究微电流对界面内应力影响

• 试样初始内应力情况

• 试样测试位置的确定

• 较高电流 (7mA及8mA) 处理后界面的拉曼光谱

7mA电流处理后的单丝复合材料界面拉曼光谱

CFRPs界面应力的变化规律(0-6mA)

CFRPs界面附近区域的显微红外光谱表征

(6mA处理后)

显微红外光谱测试区域

CFRPs界面附近区域的显微红外光谱表征

测试区域1-13的显微红外光谱

CFRPs界面附近区域的显微红外光谱表征

只有距纤维约70µm范围内的树脂发生了进一步后固化

CFRPs界面附近区域发生的进一步固化(后固化)

电热作用下内应力变化原因分析

2.4 本章小结

湿热环境对CFRPs界面结合能力的影响研究

有机溶剂对CFRPs热响应的影响研究

3.1 湿热环境对CFRPs界面结合能力的影响研究——研究背景

Wrinkles

湿热处理造成的褶皱和结构破坏

Journal of Composite Materials, 2016, 50(8): 1085-1097

试样制备和处理方式

• 试样制备-截面复合材料(用作微观测试)

试样制备和处理方式

• 试样制备-交叉层压板复合材料(用作宏观测试)

试样制备和处理方式

• 试样处理方式(截面试样和层压板试样)

- 1) **热处理:100°C的烘箱中加热2小**时;
- 2) **湿热处理:100°C下水煮2小**时;
- 3) 对照组(未处理): 始终存放于25℃干燥器。

热处理和湿热处理对树脂形貌的影响

- 湿热处理对树脂形貌的影响

相同区域AFM形貌

收缩幅度: b1→b2≫a1→a2

热处理和湿热处理对树脂形貌的影响

- 热处理对树脂形貌的影响

相同区域AFM形貌

树脂同样明显收缩

热处理和湿热处理对树脂形貌的影响

- 湿热处理和热处理对树脂形貌影响的比较

湿热处理之后 **U字形形貌**

基于相邻纤维间树脂热响应的定量分析

• 参数设定

以白线位置 A_1B_1 (处理前)和 A_2B_2 (处理后)位置为例,定义:

- 两个相邻纤维之间的平均水平距离: $\Delta X = \frac{(X_1 + X_2)}{2}$
- 纤维间树脂的收缩幅度: $\Delta Y = \frac{(Y_{21} + Y_{22})}{2} \frac{(Y_{11} + Y_{12})}{2}$

对ΔX和ΔY关系进行研究 →

• 热处理和湿热处理的树脂收缩规律差异

а

b

С

湿热处理:更小束缚范围&能力;更大收缩幅度增长率

a)湿热处理样品测试区域 b)、c)热处理样品测试区域 d) ΔX和ΔY之间关系

基于纤维外围树脂热响应的定量分析

• 两种热处理条件对纤维外围树脂的影响比较

水分使距纤维0.5µm范围内的树脂急剧收缩

短梁剪切强度分析 Shear strength of short beams

短梁强度试验

3.7 损伤形貌表征

试样侧面破坏形貌

损伤形貌表征

湿热处理

未破坏的对照组

不同处理试样的侧面破坏形貌

损伤形貌表征

未处理

热处理

湿热处理

未破坏的对照组

不同处理试样层间破坏形貌

本章小结

湿热环境对CFRPs界面结合能力的影响研究

有机溶剂对CFRPs热响应的影响研究

有机溶剂对CFRPs热响应的影响研究——研究背景

溶剂的存在使CFRPs的吸水性降低,而层间断裂韧性提高

Composites: Part A 31 (2000) 741–748

试样制备、处理和测试方式

截面试样

升温AFM测试

测试参数设定-树脂尺寸测试

样品X、Y、Z轴方 向定义

树脂X向宽度△X

Z轴向高度差△Z:

$$\Delta Z = \frac{\Delta Z_1 + \Delta Z_2}{2}$$

测试参数设定-纤维尺寸测试

X轴方向上纤维直径变化率:
$$\alpha = \frac{\phi_2 - \phi_1}{\phi_1} \times 100\% = 5.3\%$$

乙醇处理对样品形貌的影响

乙醇处理的样品

未处理的样品

纤维间树脂的热响应

纤维在X轴轴向上的直径变化

树脂、纤维形貌变化的关系

Thank you!

